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Abstract 

Multi-Scale Data Storage Schemes 
for 

Spatial Information Systems 

John Mark Ware 

The University of Glamorgan 

Abstract 

This thesis documents a research project that has led to the design and prototype 
implementation of several data storage schemes suited to the efficient multi-scale 
representation of integrated spatial data. Spatial information systems will benefit from 
having data models which allow for data to be viewed and analysed at various levels 

of detail, while the integration of data from different sources will lead to a more 
accurate representation of reality. 

The work has addressed two specific problems. The first concerns the design of an 
integrated multi-scale data model suited for use within Geographical Information 
Systems. This has led to the development of two data models, each of which allow for 

the integration of terrain data and topographic data at multiple levels of detail. The 

models are based on a combination of adapted versions of three previous data 

structures, namely, the constrained Delaunay pyramid, the line generalisation tree and 
the fixed grid. 

The second specific problem addressed in this thesis has been the development of an 
integrated multi-scale 3-D geological data model, for use within a Geoscientific 

Information System. This has resulted in a data storage scheme which enables the 

integration of terrain data, geological outcrop data and borehole data at various levels 

of detail. 

The thesis also presents details of prototype database implementations of each of the 

new data storage schemes. These implementations have served to demonstrate the 
feasibility and benefits of an integrated multi-scale approach. 

The research has also brought to light some areas that will need further research before 
fully functional systems are produced. The final chapter contains, in addition to 

conclusions made as a result of the research to date, a summary of some of these areas 
that require future work. 

Xlii 
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Chapter 1 

1.1 Introduction. 

Project Introduction 

This chapter serves as an introduction to the thesis. Section 1.2 provides a brief 

overview of Geographic Information Systems, and their 3-D counterpart Geoscientific 
Information Systems. The thesis is primarily concerned with the data models on which 
such spatial information systems are based. Therefore, early mention is made of the 

types of data which need to be accommodated by these spatial data models. Some of 
the limitations of current data models are discussed in Section 1.3, with particular 
regard to the problem of multi-scale data access. The aims of the project, which are to 

overcome some of these limitations, are also outlined. The chapter concludes with an 
overview of the rest of the thesis. 

1.2 Background. 

Many definitions have been given in the literature to describe what constitutes a 
Geographic Information System (GIS), some of which are included in Maguire [1]. In 

summary, a GIS can be thought of as a computer system that can acquire, store, 
update, process and display geographical (that is, spatially referenced) data (Figure 

1.1). 

DATA 

THE WORLD GEOGRAPHICAL 
DATA UPDATE 

MODEL 

DISPLAY 

PROCESS 

Figure 1.1 The main functions of a GIS. 

GIS development began in the 1960s with one of the earliest known implementations 
being the Canadian Geographic Information System, which was used to assist in urban 
planning. GIS research and development continued throughout the 1970s and 1980s, 

and today a wide variety of commercial systems are available. Among the best known 

are ARC-INFO (ESRI), INTERGRAPH (Intergraph) and SPANS (Tydex Technology 
Ltd. ). These, and other, systems have found a wide range of use in application areas 
which include environmental resource management, emergency planning and routing, 
monitoring the built environment (in particular, the utilities industries), market analysis, 

2 
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and population analysis and prediction. The main function of a GIS, like any other 
information system, is to improve decision making in areas such as research, planning 
and management. Decision making is aided by means of the spatial analysis functions 

available within the GIS. In modern GIS these functions include choropleth mapping, 
buffer generation, polygon overlay, contouring, network analysis, and area and length 

calculations. 

GIS differ from other types of information system in that they deal primarily with 
geographic data. This data is characterised by the fact that it is related to a specific 
location in space. Geographic data can, in the simplest case, be regarded as the digital 

representation of the information which appears on a conventional map. This data 
falls into two categories, namely, spatial data and attribute (non-spatial or aspatial) 
data. Spatial data is used to represent the form and location of objects which appear 
on the map, such as trees, houses and rivers. Non-spatial data consists of 
alphanumeric attribute information which describes, in some way, a particular spatial 
data item, or group of items (for example, the name of a river). Spatial data exists in 

one of two formats, either vector format or raster format. Vector data defines map 
objects by means of an x, y coordinate or string of coordinates which refer to object 
locations and, particularly, boundaries, within a specific spatial referencing system. 
This format provides flexible and accurate representation. Raster defined data is 

expressed as an array of pixels which categorise the contents of space on the basis of 
regular fixed size cells. The resolution of objects is therefore limited to the resolution of 
the pixel array. This thesis deals primarily with the vector format, the reason for which 
is described in Chapter 2. 

GIS typically deal with large volumes of data. The means by which data is stored is 

therefore of great importance, with efficiency, both in terms of storage space used and 
data retrieval performance, being a major objective. This thesis is primarily concerned 

with the design of the underlying spatial data models on which GIS data storage 
schemes are based. When considering the design of such data models there are a 

number of considerations to be kept in mind. The first is that the spatial functions 

which perform operations on the stored data are usually only concerned, at any one 
time, with spatially specific subsets of the complete data set. The second issue to 

consider is that of scale, and the fact that the scale at which data is required is usually 
dependent on the particular application for which it is being used. It is also important 

to understand that geographic data comes in a variety of forms and represents many 
different types of geographic entity. 

Attribute data and spatial data, which have already been mentioned, are usually 
stored separately. At present, the relational database approach is being adopted by 

many commercial systems to provide a convenient means of storing attribute data. The 

3 
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data storage schemes adopted for the storage of spatial data tend to be specifically 
designed for particular data types. Two types of spatial data of importance to this 
thesis are topographic data and terrain data. Topographic data can itself be broken 
down into three sub-types, namely, point data, line data and polygon data. These sub- 
types are combined in a variety of ways to form topographic features corresponding to 
the real world phenomena which appear on a map. Terrain data, as far as this thesis is 

concerned, refers to a collection of points, each with a height value associated with it, 

which when joined together in a particular way forms an approximation to the true 

ground surface (that is, a digital terrain model). Data structures suited to the storage of 
spatial data are reviewed in Chapters 2,3 and 4. 

An application area which makes wide use of GIS is that of geology. However, GIS are 
limited in that they do not offer true 3-D modelling facilities. This is a serious limitation 
in that geology concerns itself, in the main, with 3-D data. This data comes from a 

variety of sources, including, well logs, seismic surveys, and gravity and magnetic 
studies. Data is also made available by the digitising of existing interpreted data, such 

as contours, cross-sections and outcrop maps. Geological modelling usually involves 
large volumes of data. Until recently the computer technology available to the majority 
of the geological community could not cope with such volumes of data. Memory costs 
were too expensive, computational speeds too slow and graphical displays too low a 

resolution [2]. During the late 1980s modern workstation technology, which to some 
extent overcomes these problems, has become available. Today, the research and 
development of 3-D GIS, or Geoscientific Information Systems (GSIS) as they are 
commonly known, is accelerating. Several commercial GSIS systems are available, 
including IVM (Dynamic Graphics) and Vulcan (KRJA Systems). The basic functions of 
a GSIS are the geological equivalent of those of a GIS, namely, the acquisition, storage, 

update, processing and display of geological data. Note that greater complexity is 
involved in supplying each of these functions when compared to the 2-D GIS 

equivalent. GSIS are reviewed in greater detail in Chapter 8. 

1.3 Aims of Project. 

The project has two main aims. The first concerns the integration of data of different 

types to provide an improved spatial data model. The second aim is to provide an 
efficient multi-scale representation of the spatial data model. 

These aims are applied to two specific problems. The first concerns itself with the 
design of an integrated multi-scale data model suited to GIS. At present, many GIS can 
be regarded as limited in that 2-D topographic map data and terrain data are stored 
separately. It is the author's belief that as GIS continue to develop they will benefit 
from data models which model reality to an ever increasing extent. It is suggested here 

that a first step towards this goal is the development of a data model which allows for 
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the integration of terrain data and topographic data. In reality, geographic objects do 
not all lie on the same flat surface as suggested by current GIS data models. The 
decisions people make, whether it concerns something relatively trivial (such as, 
'should I take a bus or should I walk ? ') or something more important (such as, 'where 
is the new motorway going to go ? ') involves all available information, which will 
sometimes include information regarding terrain. Integrating topographic data and 
terrain data will benefit such decision making since it provides an opportunity to view 
and analyse topographic data in a way which bears a closer resemblance to the real 
world. Data integration can also serve to offer improved terrain modelling capabilities. 
Topographic data which represent naturally occurring physical objects usually conform 
to certain surface specific features (for example, a river running through a valley). In 
addition, certain man-made objects, such as canals, quarries and roads, also usually 
influence, or have been influenced by, the form of the ground surface. It is hoped that 
combining the two data types will lead to an improved terrain model, that is, one 
which more accurately represents the ground surface. Such integration will be of benefit 
to application areas such as civil engineering, landscape architecture and geology. 

GIS would also benefit from having data models which allowed for data to be viewed 
and analysed at different levels of detail, according to the areal extent, or scale, of the 
region of interest. A current goal for many GIS researchers is the development of a 
scaleless database, in which all data is stored at a single, highly detailed source scale. 
All other scales would be derived from the source scale data at run-time in answer to 

specific database queries. At present, such a database is not feasible, since not all 
generalisation functions are available in an automated form, and those which are are 
often slow and only perform well over small changes in scale. Current GIS cater for 
different levels of detail by adopting a multiple representation approach, that is, a 
different set of data representing each scale. There are two main disadvantages to this 

approach. The first concerns the high storage overheads involved in storing a complete 
data set for each scale represented. Much information will be repeated between scales. 
The second disadvantage involves the inconsistency which can develop between 
different scale versions of the same data. Updating a particular data set at one scale 
without carrying out an equivalent update at all other scales will lead to inconsistency. 
It is suggested here that a compromise can be reached by adopting a multi-scale data 

structure approach. Multi-scale data structures provide means of efficiently storing 
and retrieving spatial data from databases at levels of detail which are adaptable to 
different scales of representation. A review of such data structures is given in Chapter 
4. 

The second specific problem addressed in this thesis concerns the development of an 
integrated multi-scale 3-D geological model. It is noted that GSIS, like their geographical 
counterparts, are currently poor with regards to data integration. The need to overcome 
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this problem is probably greater in the field of GSIS since geological data are usually 
sparse and the geological objects they are seeking to represent are complex. Therefore 
there is a need to integrate all available data in order to create accurate geological data 

models. This thesis addresses a particular problem, namely, the integration of terrain 
data, geological map data (topographic data) and borehole well log data to assist in 
the construction of an accurate 3-D geological model. This work forms part of a larger 

project currently taking place at the British Geological Survey (BGS) which is 

attempting to integrate data from a variety of sources (geological and geophysical). The 

ability to efficiently store and access data at multiple levels of detail is of an equal 
benefit to GSIS as it is to GIS. Therefore the work addresses the design of an integrated 

multi-scale 3-D geological model. This problem, and the BGS project, are discussed in 

greater detail in Chapter 8. 

Note that with regards to both models, in addition to the design of the data model 
itself, it is also necessary to develop algorithms which when applied to source data will 
allow for the implementation of the model. This project therefore addresses both the 
design of the integrated multi-scale spatial data models and the development of 
methods by which the models are constructed from source data. 

1.4 Thesis Outline. 

This chapter has served as an introduction to the thesis. It has given brief background 
information concerning GIS and GSIS, and noted two shortcomings. The first relates to 
the lack of data integration facilities within current systems, while the second pertains 
to the inefficient way in which multiple scale representations are handled. The aims of 
the thesis have been stated as finding solutions to these problems. 

The remaining chapters in this thesis can be divided into three distinct groups. 
Chapters 2 to 7 concern themselves with the design and implementation of data 

models and algorithms suited to the efficient multi-scale representation of integrated 

geographical data. The next two chapters, Chapters 8 and 9, deal with the equivalent 
geological problem, developing the work described in the previous chapters into 3-D. 
Finally, the thesis is concluded in Chapter 10. 

Chapter 2 provides a review of some basic GIS data structures suited to the storage of 
either topographic data or terrain data. The following chapter, Chapter 3, deals with 
the topic of spatial access data structures, providing details of the fixed grid, the 
quadtree, the R-tree and the grid file methods. Multi-scale data structures are then 

reviewed in Chapter 4, with special attention given to the line generalisation tree and 
the Delaunay pyramid. A new data storage scheme, termed the Multiresolution 
Topographic Surface Model (MTSM), is proposed in Chapter 5. This scheme, based on 
the fixed grid, the line generalisation tree and the constrained Delaunay pyramid data 
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structures, provides an efficient integrated multi-scale representation of terrain data 
and topographic data. Chapter 6 describes two database implementations of the 
MTSM and gives the results of a series of performance evaluation tests. A new, 
improved version of the recently developed Implicit TIN data storage scheme is 
described in Chapter 7. An Implicit TIN version of the MTSM, termed the I_MTSM, is 
then detailed. 

Chapters 8 and 9 concern themselves with the design and implementation of an 
integrated multi-scale 3-D geological data model. Chapter 8 begins with an 
introduction to GSIS, outlining the 3-D GIS project currently being carried out by BGS. 
A review of 3-D object representation techniques is then supplied, with special 
consideration given to boundary representation and octree methods. Several techniques 
for providing efficient spatial access to collections of 3-D objects are then discussed. 
The chapter concludes with the description of a multi-scale 3-D data model (MGM), 

which, building on the design of the MTSM, provides integrated storage of terrain data, 
geological outcrop data and borehole data. A prototype database implementation of 
the MGM, and the results of performance tests, are described in Chapter 9. 

The thesis concludes in Chapter 10, which provides a thesis summary, a report on the 
achievements made by the project and an indication as to how the work might proceed 
in the future. 
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2.1 Introduction. 

A Review of GIS Data Structures 

The data structures used for the internal representation of geographical data are a 
concern to both designers and users of GIS. This chapter provides an overview of some 
of the more well known of these data structures. Section 2.2 addresses the issue of the 
type of data that a GIS is expected to be able to handle. Two data types of importance 
to this thesis are topographic data and terrain data. Data structures suited to the 
storage of each of these data types are reviewed in Section 2.3 and Section 2.4 

respectively. Finally, Section 2.5 gives a chapter summary and provides conclusions as 
to which of the data structures reviewed are of particular benefit to the design of the 
integrated multi-scale data model proposed in Chapter 1. 

2.2 Geographic Data. 
It is a fact that GIS must be able to store geographic data. In a first instance, this 
becomes equivalent to storing the information which appears on a map (although 

advancing research in areas such as Artificial Intelligence and Hypermedia is now 
enabling the storage of much more information than just that which appears on a map). 
A map can be considered to be made up from objects (such as buildings, roads and 
rivers), which give a graphical representation of reality, and text (YH or SWANSEA for 

example), which describe what the objects mean. In addition, GIS give the possibility of 
storing information which might not have been stored on the original map, such as the 
population of Swansea or the price per night at the Youth Hostel. Also, much of the 
information held on a map is implied information, such as Cardiff is the nearest city to 
Swansea or that the Youth Hostel is on an isolated island in the middle of a lake. Since 
a GIS is required to perform many functions which require implied information, such as 
produce all Youth Hostels within walking distance of Swansea, it is desirable to 
somehow include implied information within GIS. 

The data types held in a GIS can be classified into two distinct groups, namely spatial 
data and attribute data. Spatial data can itself be divided into two components, that 
is, geometric data and topological data. Geometric data are used to represent the 
metric locational information which appears on a map, such as the position and size of 
a building, and can be in either vector or raster format. This review restricts itself to the 
vector format. The main reason for this is that the two data structures which are to 
form the basis of the integrated multi-scale data model (namely, the constrained 
Delaunay pyramid and the line generalisation tree) are vector-based. This is not seen as 
too great a restriction on the usefulness of the proposed data model since vector- 
formated data is at present widely available and widely used. The 2-D vector data 
format has three sub-types, namely, point, line and polygon. Other primitives such as 
circles and splines are possible but these do not usually occur as primary data in a GIS. 
Topological data describe the relationships between geometric data. The three basic 
relationships that exist are connectivity, adjacency and inclusion. Topological data are 
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not always explicitly stored since in principle they can be derived from geometric data. 
Attribute data are alphanumeric data related to geographic objects, such as the 

estimated value of a building or the name of a river. 

A further geometric data type, which can be regarded as distinct from the others 
already mentioned, is that which represents terrain. This type of data item can be 

distinguished from, say, an isolated vector point representing a spot height or elevation 
point, in that it forms part of a collection of other data items of the same type, which 
when joined together in some way seek to form an approximation to the ground surface 
(a terrain model). Data of this type will hereafter be referred to specifically as terrain 
data, while all other geometric data (polygons, lines, points and, in next section, 
objects) will be referred to as topographic (physical feature) data. Traditionally, GIS 
have been primarily concerned with topographic data. When terrain models are 
present, they are stored separately. As such, the storage of topographic data and the 

storage of terrain data will now be discussed separately. 

2.3 Data Structures for Topographic Data. 
The types of topographic features that appear on maps, such as buildings, roads and 
county borders, can be thought of as comprising of points, lines and polygons. The 
latter are perhaps the most frequently encoded feature in geographic data systems. The 

capture and storage of such data commonly takes one of two forms, vector format and 
raster format, each method having particular advantages and disadvantages when 
compared with the other. For reasons which have already been mentioned, this section 
will deal only with vector data. 

2.3.1 A Simple Storage Scheme. 
A simple data structure for storing map feature data is that of encoding entity by 

entity, with no account taken of topological relations between entities. In other words, 

all polygons, lines and points are encoded without regard of the fact that they may 
intersect or merge with other polygons, lines and points. Names or symbols which 
define what each entity is are held as a list of attribute text strings, as shown in Figure 
2.1. While this method has the advantage of simplicity, it has many disadvantages (see 

Figure 2.2). Firstly, lines between adjacent polygons must be stored twice, leading to 

serious errors in matching (giving rise to slivers and gaps along the common boundary) 

and unnecessary data duplication. A second disadvantage is that there is no 
topological information, which results in poor performance in operations such as 

adjacent object queries and the inability to represent islands (except as purely 
geographical constructions). 

10 
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Entity Number Coordinate List I Attribute 

1 

2 

X1 yl 
x2 y2 
x3 y3 
x4 y4 
X1 yl 

x5 y5 
x6 y6 

HOUSE 

ROAD 

Figure 2.1 -A simple method for storing topographic feature data. 

Finally, there is no simple way of checking if the topology of a polygon is correct, that 
is, if it is incomplete (dead-ends) or if it makes a topologically inadmissible loop 
(weird polygons). 

Dead I 

C 

Sliver 

Figure 2.2 - Some of the disadvantages of the simple method for storing data. 

2.3.2 An Improved Data Structure. 
Some of the limitations of independently encoded structures can be overcome by 
introducing a point dictionary (Figure 2.3). This dictionary contains the coordinates of 
every data point on the map, with each coordinate pair being assigned an unique 
identifier. Polygons, lines or points representing map objects are then made up of lists 

of coordinate identifiers. This method has the advantages that boundaries between 

adjacent polygons are unique and therefore slivers and gaps do not occur. A further 

advantage is that point coordinates are only stored once, thus reducing storage costs. 

11 
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4 
3 

52 
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Point Dictionary 

Coordinates I Identifier 

X1 yl 1 
x2 y2 2 
x3 y3 3 
A y4 4 
x5 y5 5 
x6 y6 6 

11 
2 
3 
4 
1 

HOUSE 

25I ROAD 
6 

Figure 2.3 - The point dictionary method. 

An extension to this method is the addition of a line dictionary and a polygon 
dictionary. Map objects can also be introduced as the highest level data entity, with 
each object consisting of a list of identifiers referring to its constituent polygon, line and 
point parts. This method further reduces storage overheads by removing the need to 

store multiple copies of the same line or polygon. 

2.3.3 Topological Data Structures. 
Further data structures have arisen which address the problem of including topological 

relationships within the data model. One of the first attempts at such a structure was 
the Duel Independent Map Encoding (DIME) system of the US Bureau of the Census 
[3]. The basic element of the DIME data file is a simple line segment defined by its two 

end points, referred to as nodes; more complex lines are represented by a series of 
segments. The segment has two pointers to the nodes, and codes for the polygon on 
each side of the segment. Because nodes do not point back to segments, or segments to 

adjacent segments, laborious searches are needed to assemble the outlines of polygons. 
Moreover, the simple segment structure makes handling of complex lines very 
cumbersome because of large data redundancy. 

A simple, effective approach is that developed by the Netherlands Soil Survey Institute 
[4], as shown in Figure 2.4. The polygon map is stored as a segment or chain file in 

which each chain is stored as a list of x, y coordinate pairs and two pairs of pointers 
that index the adjacent map areas. The attributes describing each polygon, together 

with its corresponding index, are stored separately. 

A Review of GIS Data Structures 

Entity Number I Point List I Attribute 
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Chain number I Coordinates I Polygons 

cl 

c2 

c3 

Description File 

Polygon Number I Description 

P1 House 

p2 Shop 

p3 Garage 

X1 yl 
x2 y2 
x3 y3 
x4 y4 

x4 y4 
X1 yl 

x5 y5 
x8 y8 
x7 y7 
x6 y6 

pl, - 

pl, p2 

p3, - 

Figure 2.4 - Polygon map stored as a chain file with descriptive data stored 

separately. 

A more recent development, illustrated in Figure 2.5 is the Topologically Integrated 
Geographic Encoding and Referencing (TIGER) System [5,6], produced by the US 

Bureau of the Census as a refined successor to DIME. Here, polygon, line and point 
primitives are referred to as 2-cells, 1-cells and 0-cells respectively. The first and last 

points of each 1-cell are called from and to 0-cells. The intermediate points of a 1-cell 

are called curvature points and are connected by vectors. Each 1-cell points to the two 
2-cells positioned directly to its left and right sides. The unbounded region that 

surrounds the collection of all 1-cells is a special 2-cell, labelled the outside 2-cell. In 

addition to these definitions, the topological structure must obey two rules. Firstly, the 

rule of Topological Completeness insists that the topological relationships between cells 

are complete. For example, this means that each 2-cell, except the outside 2-cell, must 
be completely surrounded by a set of connected 1-cells. The second rule, that of 
Topological-Geometric Consistency, requires a consistent relationship between the 

geometric placement of cells and the pure topological relationships of cells. For 

example, no two 2-cell interiors can share a common coordinate. 
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from 

I 
1-cell 

3-cell left right 
2-cell 2-cell 

ý- 

to 
0-cell 

Figure 2.5 - The TIGER structure. 

1-cell 

The primary data model for the widely used ARC/INFO GIS consists of four main 
entities, namely Arcs, Nodes, Label Points and Polygons. Arcs are used to represent 
line features and the borders of polygons. One line feature or polygon can be made up 
from many Arcs. The shape of Arcs, which are each assigned an identifier termed a 
USER_ID, are defined as a series of x and y coordinates. The data model provides the 
possibility of linking Arcs to their endpoints (Nodes) and to the areas (Polygons) to 
each side of them. Nodes, which represent Arc endpoints and where line features 

connect, can be topologically linked to the set of Arcs which meet at the Node. Label 
Points either represent point features or are used to assign USER_IDs to polygons. 
Each Label Point is described by an x and y coordinate and a USER_ID. Polygons 
represent area features as defined by the series of Arcs which compose their borders 

and by a Label Point positioned inside the Polygon. This Label Point is used to assign 
the Polygon a USER_ID. Descriptive data concerning Arcs, Label Points and Polygons 

are held in relational Attribute Tables. This information is related to each Arc, Label 
Point or Polygon via the USER_ID assigned to each feature. 

2.4 Data Structures for Terrain Data. 
As the number of GIS users has increased and the range of required uses diversified, a 
need has arisen for GIS to provide facilities and functions which involve the Earth's 

surface. Disciplines which would benefit from these facilities and functions include civil 
engineering, radio path loss analysis, geological surveys and landscape architecture. A 

means by which the Earth's surface can be adequately represented within a GIS is 
therefore required. Digital terrain modelling is the term commonly used to describe the 

range of methods that have been devised to meet this requirement. Since the Earth's 

surface is an irregular 3-D continuum, it can only be fully defined and depicted by an 
infinite number of discrete measurements. This approach is not feasible, due to both the 
problem of data collection and to the finite nature of data storage. Therefore, the 
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problem of digitally representing the Earth's surface has had to be addressed by 

adopting methods, both numerical and mathematical, based on a finite set of terrain 
measurements. 

The nature of the terrain data structures adopted depends largely upon the degree to 
which they attempt to model reality and, or, the intended application of the user. These 

user-specific approaches have led to the creation of a variety of digital terrain models 
(DTMs), an overview of some of the most popular of which are given by Peucker [7]. It 
is noted here that the primary purpose of a DTM is to serve as a substitution for the 
Earth's surface. The quality of the DTM is therefore primarily determined by the degree 
to which it approximates to this surface. 

2.4.1 The Regular Rectangular Grid. 
The most commonly used DTM is the regular rectangular grid (Figure 2.6). Its 

popularity may be attributed to its simplicity, implicit coordinates, application 
efficiency and widespread availability of data in this format. The grid does however 
incur a major disadvantage in that it does not adapt to the changing roughness of 
terrain. This means that in areas where there is considerable terrain variability the grid 
will need to have a high point density if it is to approximate accurately. When the same 
sampling density is applied to flat terrain it will lead to considerable data redundancy. 
Reaching a suitable compromise between point density and data redundancy cannot 
always be achieved. 

Figure 2.6 - The Regular Rectangular Grid. Each point represents a height measurement. 
Only the z values need to be stored since the x and y coordinates can be derived from the 

position of the point in the grid. 

2.4.2 The Triangulated Irregular Network. 
An alternative DTM, which seeks to overcome the disadvantage of the regular 
rectangular grid, is the Triangulated Irregular Network, or TIN [8]. The TIN utilises 
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'surface-specific' points, such as peaks, pits and passes, to form a network of planar, 
non-overlapping and irregularly shaped triangular facets. The TIN model adapts itself 
to the roughness of the terrain, with no data redundancy, since all data included in the 

model represents only critical points. The construction of this model is equivalent to the 

problem of computing a straight-line graph in the plane, called a planar triangulation, 
in which the data point projections are joined by straight lines which intersect only at 
their endpoints. 

Methods for constructing the planar triangulation of a set of points have received much 
attention in the literature (see, for example, [9,10,11,12]). For most applications, such 

as interpolation, an arbitrary triangulation might not provide an acceptable solution 
because of the elongated shape of its triangles. A good triangulation can be thought of 

as one in which the triangles are as equiangular as possible, thus avoiding long and thin 
triangular facets. 

2.4.3 The Delaunay Triangulation. 
The Delaunay triangulation has become accepted as the best approach to the creation 
of a TIN. It is optimal with respect the equiangular requirement and thus has been 

extensively used as a basis for surface modelling. In addition to producing the most 
equiangular set of triangles for a given set of points, it has the advantage of producing 
a unique triangulation of those points. 

2.4.3.1 Defining the Delaunay Triangulation. 
The 2-D Delaunay triangulation of a set of points S in the plane can be defined as the 
dual of the Thiessen tessellation (also known as the Dirichlet tessellation or Voronoi 
tessellation) of S. The Thiessen tessellation is formed as a result of subdividing the 

plane into polygonal regions, each of which is associated with a point p of S and is 
defined as the region closer to p than any other point q of S [10]. This is an important 

concept in geographic applications since a Thiessen polygon can be used to define the 
region of influence of any point in an areal context. In Figure 2.7, points 1 to 5 are 
known as the Thiessen neighbours of point p. 
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2 

5 5 

44 

Figure 2.7 - Delaunay triangulation around a point p. 

Three lemmas can be distinguished which globally and locally define a Delaunay 
triangulation [11]. They are - 

Lemma 1: For any triangulation of N vertices, B of which are on the 
boundary (convex hull), there are 2N-B-2 triangles and a 
total of 3N-B-3 edges. 

Lemma 2: Two vertices form a Delaunay edge if and only if there exists a 
circle passing through the vertices that does not contain any 
other vertex. 

Lemma 3: Three vertices form a Delaunay triangle if and only if its 
circumcircle does not contain any other vertex in its interior. 

By applying Lemma 2 and 3 it is possible to produce algorithms which construct the 
Delaunay triangulation for S (see Figure 2.7). 

2.4.3.2 Data Structures for Storing TINs. 
A TIN can be considered as having three primary topological components, namely, 
vertices, edges and triangles. A data structure suited to encoding a TIN can be regarded 
as the combination of these basic components and a set of adjacency relations [12]. 
Woo [13] demonstrates, using an arrow diagram (Figure 2.8), that a total of nine 
relations can be defined between pairs of these primitive components. Furthermore, it 
has been stated by De Floriani [12] that any suitably selected subset of these relations 
can represent, completely and unambiguously, the topology of a TIN. 
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lr, 7, \ 

low 

Figure 2.8 - Nine possible relations between pairs of entities in a TIN 

(V: vertex, E: edge, T: triangle). 

In all TIN data structures it is necessary to define the x, y and z coordinates of every 
surface-specific point. It is also possible to define a point index to provide an unique 
identifier for each point. In Figure 2.9, it is assumed that having done this, some 
additional data must be stored to define the structure of the triangulation. Which of the 

nine schemes is most appropriate is dependent on the requirements of specific 
applications, so that they each have their own distinct advantages and disadvantages. 
It should be noted that a hybrid of topological relationships is allowable but any such 
increase in topological information is directly related to storage costs. For any 
triangulation of N points, B of which are on the boundary, it can be shown using Euler's 
theorem that there are 2N-B-2 triangles and a total of 3N-B-3 edges (or 6N-2B-6 
directed pointers if stored as links from each vertex). For a vertex-based TIN, each 
point's coordinates may be stored with a list of pointers to the connected vertices (see 

vertex-vertex relation in Figure 2.9). If the x, y and z coordinates, index and each 
pointer require the same unit storage, the total TIN storage will approximate to 10N. 
The triangle-based TIN will require more storage (approximately 16N) since for each of 
the 2N-B-2 triangles, pointers to three vertices and three neighbouring triangles are 
stored (12N-6B-12), together with vertex coordinates and index (4N). 

2.4.3.3 Constructing a Delaunay Triangulation. 
Efficient algorithms for computing a 2-D Delaunay triangulation have been presented in 
the literature, a comprehensive review of which is given by De Floriani [12]. Using 
Lemmas 2 and 3 from Section 2.4.3.1, algorithms can be defined for the construction of 
the Delaunay triangulation in which the properties of Lemma 1 are implicitly 

incorporated. 
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1 Vertex - Vertex 
2 Vertex - Edge 
3 Vertex - Triangle 

V2 
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6 Edge - Triangle 

7 Triangle - Vertex 
8 Triangle - Edge 
9 Triangle - Triangle 

Given Vi store V2, V3, V4 
Given Vl store El, E2, E3 
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Given Tl store El, E4, E3 
Given Tl store 12, T3, T4 

V5 

Figure 2.9 - Illustration of the nine possible relations between pairs of entities in a 
TIN. 

I 

Classical algorithms for constructing the Delaunay triangulation can be classified in a 
number of ways (see [121). For instance, an algorithm is termed incremental if it 

constructs the triangulation by starting from any point and proceeding by adding the 

remaining points into the subdivision in a stepwise manner. Conversely, divide-and- 

conquer algorithms recursively split the set of data points into equally-sized subsets 
until elementary subsets are obtained. These can then be merged to form the complete 
triangulation. One-step and two-step methods are distinguished by whether they 

produce a final optimal triangulation in a single step or in two steps (by firstly 

obtaining an arbitrary triangulation which is then optimised). Also, static and dynamic 

algorithms differ in that the former assume that all data points to be included in the 
triangulation are known in advance while the latter make no such demand. 

An algorithm of particular relevance to this thesis is the point insertion algorithm 
described by Watson [14], and more recently adopted in the work of De Floriani [15]. 

The algorithm is an incremental, dynamic, one-step algorithm based on the stepwise 
insertion of internal, currently untriangulated points, into an initial enclosing Delaunay 

triangulation. The initial triangulation can be obtained in a number of ways. A simple 
method is to employ three dummy points which form an initial, single enclosing 
triangle. On completion of the triangulation process any triangle which contains a 
dummy point is removed. An alternative approach consists of producing an initial 
Delaunay triangulation of those points which define the convex hull of the points to be 

triangulated. Algorithms for constructing the convex hull of a set of points and 
computing the Delaunay triangulation of a convex polygon are given by Larkin [16] and 
Derijver and Maybank [17] respectively. 
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influenced by p. triangulate Rp. 

Figure 2.10 - Inserting a point into a Delaunay triangulation. 

The second stage involves sequentially inserting each currently untriangulated point 
into the current Delaunay triangulation. After each insertion a new Delaunay 
triangulation will have been formed. Descriptions of methods for inserting a point into 

an existing Delaunay triangulation have been given in the literature [14,15]. These 
methods are based on the premise that according to the circle criterion (Lemma 2), the 
insertion of a new point p into a Delaunay triangulation T affects only those triangles Ip 
of T whose circumcircles contain p. The process of inserting the point p can be 

summarised as locating the triangle t of T in which p lies; recursively examining the 
neighbours of t until all triangles I, are found; constructing the polygon RP formed by the 
external edges of the triangles in Iý deleting the triangles in IP and finally Delaunay 
triangulating RP (this is done by connecting p to each vertex of RP). This process is 
illustrated in Figure 2.10. 

2.4.4 Constrained Delaunay Triangulation. 
As has already been mentioned, triangulation algorithms based on Delaunay 
triangulation have the advantage of producing the set of most equiangular triangles. 
However, note that Delaunay's method was first developed to solve nearest neighbour 
problems in the xy-plane, not as a method for surface approximation. As such, 
Delaunay triangulation algorithms do not consider the third dimension (z coordinate), 
and may therefore produce triangle edges that contradict the true topology of the 

surface [181. To counter this problem, while at the same time attempting to preserve the 
equiangular property of Delaunay triangulation, algorithms have been developed which 
produce constrained Delaunay triangulations [19,20,211. These algorithms ensure that 
any known constraints on the surface, such as lines representing ridges or valleys, are 
maintained as edges within the triangulation. Retention of these edges results in local 
violation of the Delaunay circle criteria. However, in doing so, the surface more 
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accurately models the real world surface. The Delaunay criteria is used to model those 
parts of the surface for which no structural information is available. 

De Floriani and Puppo [22] present a dynamic, two-step method for producing the 

constrained Delaunay triangulation. The first step is to construct a conventional 
Delaunay triangulation of all vertices, using any method available. The second stage is 
to iteratively insert the constraining features into the triangulation as a series of straight 
line segments. After each insertion, a new constrained Delaunay triangulation is 

produced. 

Algorithms for inserting a line segment L, defined by vertices pl and P2 (which must 
already be in the triangulation), into a constrained Delaunay triangulation T are given 
by Heller [21] and De Floriani and Puppo [22]. They can be summarised as firstly 
locating a triangle t of T which has pl as a vertex; proceeding to find all triangles IL 
through which L passes; constructing the polygons RLI and RL2either side of L formed 
by the external edges of the triangles in Iv deleting the triangles Iv and finally Delaunay 
triangulating the polygons RLI and RL2 in turn (see Figure 2.11). 

Pl Pl pl pl 

Pi PZ PZ PZ 

Triangulation Find the Construct polygons Delaunay Triangulation 
before the line triangles IL RLi and Rtz formed triangulate Iti after L is 
segment L (pi, p2) intersected by L. by external edges of and Ru inserted. 
is inserted. triangles of I Delete 

triangles of L. 

Figure 2.11- Inserting a line segment into a constrained Delaunay triangulation. 

2.5 Summary and Conclusions. 
This chapter has reviewed a number of data structures suited to the storage of 
geographic data. The data structures fall into two categories, namely, those used for 

storing topographic data and those used for storing terrain data. Chapter 1 has stated 
that the multi-scale data model being designed must accommodate both topographic 
and terrain data, and integrate both data types in some way. It is suggested here that 
any topographic data structure used in this work should facilitate the inclusion of the 
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three vector data format sub-types (point, line and polygon), and objects made up 
from collections of these sub-types. Also, to avoid matching errors and unnecessary 
data duplication, it is beneficial to adopt the point, line and polygon dictionary 

approach, outlined in Section 2.3.2. The inclusion of topographic topological 
information is not seen as vital at this stage. With regards the storage of terrain data, 

the TIN approach seems to be appropriate to the design of the integrated multi-scale 
data model. In addition to the traditional advantages it has over other terrain 

representation techniques (see Section 2.4.2), it has two properties of particular 
importance to this thesis. Firstly, certain of the algorithms used for the construction of 
TINs (for example, [14]) can be adapted and used as surface generalisation algorithms. 
These algorithms can be used in conjunction with more complex triangle based data 

structures to produce hierarchical triangulations (see Section 4.3). The second 
important property a TIN has is its ability in include arbitrarily positioned points and 
pre-defined edges, thus facilitating the integration of topographic data. Both these 

properties are explored in greater detail in later chapters. 
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3.1 Introduction. 

Efficient Access to Spatial Data 

The purpose of this chapter is to introduce the concept of spatial access data 
structures. Section 3.2 provides some indication as to why spatial access data 

structures are needed in GIS. A review of some of the spatial access data structures 
which are, at present, in common use is then given in Section 3.3. The subject is looked 

at purely from a two-dimensional point of view, with special attention being given to 
the fixed grid, the quadtree, the R-tree and the grid file methods. Section 3.4 provides a 
chapter summary and indicates which of the reviewed methods are to be adopted in 
the design of the integrated multi-scale data model. 

3.2 The Need for a Spatial Access Data Structure. 
A simple way of demonstrating the need for a spatial access data structure is by 

means of example. Consider a cartographic database consisting of point data, 
representing cities, and associated attribute data. A typical query to such a database 

might be to determine all cities within 50 km of some other city, Bristol say, that have a 
population in excess of 100,000. If the data is stored conventionally, in a relational 
database for example, one possible approach to answering the query would be to 
sequentially search through the list of cities, checking for population, and, for those 
cities with population greater than 100,00, calculating the distance from Bristol. Such 
an approach appears satisfactory when the database is small or when a large 
proportion of the cities satisfy the query. However, such a simplistic approach is not 
suitable for a large database, representing the whole of the UK for example, where only 
a small proportion of the cities will satisfy the query. It is therefore necessary to design 
databases where it is possible to retrieve information efficiently according to its spatial 
location, thus reducing the amount of data accessed, and subsequently processed, as 
the result of a query. The data structures upon which such databases are based are 
referred to as spatial access data structures. 

3.3 Spatial Access Data Structures. 
This section discusses four well-known, and commonly used, spatial access data 

structures. They are the fixed grid, the quadtree, the R-tree and the grid file. A 

comprehensive review of these and other spatial data structures is given by Samet [23, 
24]. The reason for choosing these four data structures for special scrutiny is that a 
basic understanding of them is necessary to assist in the description of more complex 
data storage schemes in later chapters. 

It is not the intention of this thesis to give an in-depth evaluation of the relative merits 
and demerits of each of these data structures. One may benefit by its simplicity, 
another by its efficiency or applicability to a wide range of data types. Much work in 
the literature has been produced with regards quantifying some of these relative 
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attributes (see, for example, [25,26]), with seemingly no single data structure coming 
out an overall winner. Suffice to say that when dealing with spatial data, it is necessary 
to have some kind of data structure providing indexing with regards spatial location. 
The benefits gained or lost between which of the available structures is used are 
minimal when compared to the benefits gained by having a spatial access data 

structure, of any type, in the first instance [26]. 

3.3.1 The Fixed Grid. 
The fixed grid [27] is a data structure based on the concept of the division of xy-space 
into equal-sized cells. Thus a single areally extensive region of spatial data is 

partitioned into smaller, equal-sized sub-regions. Each cell, sometimes referred to as a 
bucket, corresponds to an area of storage (or memory) in which all data lying within 
the cell, in space, is stored. The data structure is essentially a directory in the form of a 
two-dimensional array, with one entry per cell. 

The fixed grid is particularly suited to storing point data. It is best illustrated by means 
of a simple example. Consider the following set of conventionally stored point data 
(Figure 3.1), representing the location of cities. 

Point Attribute 

184.0 32.8 Bath 
166.5 34.2 Bristol 
136.3 38.5 Cardiff 
182.0 64.0 Gloucester 
176.0 48.0 Newport 
102.5 44.0 Swansea 
184.5 88.0 Worcester 

Figure 3.1= Conventionally stored point data. 

To locate all cities within 20 km of Newport would necessitate examining the 

coordinates of each of the 6 other cities and performing a distance between points 
calculation in each case. 

Now consider partitioning the data using a fixed grid (Figure 3.2). To answer the 

previous query, the first step would now be to produce a list of all grid cells which lie 

within 20 km of Newport, a relatively trivial operation. This gives a list of 9 possible 
cells, only 2 of which contain relevant data. There is now therefore only the possibility 
of 2 cities (Bristol and Cardiff) lying within 20 km of Newport, each of which can be 

checked in turn. 
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Figure 3.2 - Storage of point data using a fixed grid. 

Point data which lies on the edge or corner of two or more cells is catered for by 

adopting the convention that such a point is always assumed to lie in the cell above 
and to the right (or some similar convention). 

Each cell corresponds to an area of storage, the size of which is fixed. A problem will 
therefore occur if the number of data items that lie within a cell necessitates more 
storage than is available. Such occurrences can be minimised by optimising the cell size 
[28], but there is always the possibility that the number of data items will exceed the 
storage limit. This problem can be overcome by employing a chaining mechanism. Here, 

each full cell maintains a pointer to a secondary cell (which is not part of the original 
grid) in which excess data is stored. The secondary cell may, if necessary, point to a 
further secondary cell, and so on, thus forming a chain of cells. 

It is clear that the fixed grid is best suited to storing point data and there are potential 
difficulties encountered when dealing with more complex data types such as line and 
polygon data. For example, it would not be unusual for a polygon to intersect more 
than one grid cell, or for a large number of complex data items to intersect a single cell. 
A solution to the first of these difficulties is to segment any data item that intersects 
more than one cell into a number of new data items, each of which lies within only one 
cell. This results in an increase in storage due to the increased number of data items 

and the additional data required to define the points of intersection the new data make 
with the grid cell edges. The second difficulty can be catered for using the chaining 
techniques previously described. This, however, is inefficient in that long chains of data 
items can occur, resulting in increased storage and slower data access. 
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As previously suggested, a disadvantage of the fixed grid data structure is that it is 

entirely regular in its subdivision of space, regardless of whether or not this is 

reasonable for the data being stored. If the data is uniformly distributed over space this 
does not lead to any problems. However, if the data is non-uniformly distributed over 

space two particular problems arise [23]. Firstly, some cells will be under-utilised, 
being empty or nearly empty. This is clearly inefficient with regards storage space. On 

the other hand, other cells may be over-utilised, leading to long overflow chains. This 
leads to a large number of storage accesses for all subsequent queries involving any cells 
that have overflowed, leading to increased access time. Three spatial data structures 
which seek to overcome these disadvantages are the quadtree, the R-tree and the grid 
file. These data structures are data adaptive in the manner in which space is divided, 

that is, division is object-driven rather than space-driven [15]. 

3.3.2 The Quadtree. 

The quadtree, first suggested by Klinger [29], is a data structure which is based on the 

recursive regular decomposition of a square region into quadrants and sub-quadrants. 
Much pioneering work regarding the quadtree and its derivatives has been carried out 
in recent years by Samet (for example, [23,24,30]). 

Perhaps the simplest form of quadtree is the region quadtree [29,31], which is 

concerned with the efficient representation of two-dimensional binary image data. For 

a binary image, covering a square region, the region quadtree is constructed as follows. 

If the region under consideration is non-homogeneous, that is, does not consist entirely 

of 1's or entirely of 0's, it is divided into quadrants. Each quadrant is checked in turn 
for homogeneity, and any which are found to be non-homogeneous are themselves 

subdivided. Subdivision continues in a recursive manner until sub-quadrants are 

obtained that consist entirely of 1's or entirely of 0's. The region quadtree is represented 
by a tree structure, rooted at the node representing the whole square region. Each son of 

a node represents a quadrant of the region represented by that node. Each node has 

out-degree (number of sons) 4, except the leaf nodes, which have out-degree 0 (as they 

are not subdivided further). A node can therefore be represented by five fields, the 
first four containing pointers to sons (if there are any), the fifth indicating if the node is 

empty (0), full (1) or a non-leaf node. As an example, consider the image shown in 

Figure 3.3a, represented by the 23 x 23 binary image in Figure 3.3b. 1's correspond to 
image elements, 0's to non-image elements. The resulting quadtree subdivision and 

region quadtree are shown in Figure 3.3c and Figure 3.3d respectively. 
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Figure 3.3 - The region quadtree. (a) Image. (b) Binary image. 
(c) Quadtree subdivision. (d) Region quadtree. 

The region quadtree, developed for storing binary, or raster, data, has been extended to 
allow for the storage of point, line and polygon data. The MX quadtree [23] is an 
attempt to use region quadtree methods for the storing of point data. MX stands for 
MATRIX and the approach is to treat the point data as existing in a sparse matrix, 
each point being equivalent to a single matrix element. The matrix is decomposed by a 
method identical to that used for binary data. However, each node now consists of six 
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fields. The first four contain pointers to sons, the fifth indicates if the node is empty, 
full or a non-leaf node and the sixth contains descriptive information about the point 
being represented at the node. There is no need to store the coordinates of the point 
data since this is derivable from the path to the node from the root of the tree. 

The usefulness of the MX quadtree depends upon there being a one-to-one 
correspondence between points and the matrix elements. This constraint is relaxed 
with the PR (Point Region) quadtree [23]. The PR quadtree is organised in a way 
similar to the region quadtree. The difference is that leaf nodes are either empty or 
contain a data point (that is, full) and its coordinates. A quadrant contains at most 
one data point. A PR quadtree node is therefore made up of eight fields. The first six 
correspond to those of the MX quadtree, with two extra fields required to store the x 
and y coordinates of the point represented by the node. 

Further extensions to the region quadtree data structure have resulted in many quadtree 
variations suited to the storing of line and polygon data. These include the edge 
quadtree [32], the least square quadtree [33], the line quadtree [34] and the PM 

quadtrees [34,35]. The edge, least square and line gitadtrees are all pixel based 

methods, and as such, will not be dealt with further here. 

There are three types of PM quadtree, the PM1, PM2 and PM3 quadtrees, which are 
each oriented towards storing information about the edges from which lines and 
polygons are made up. PM quadtrees are arranged in a way similar to the region and 
PR quadtrees. A region is repeatedly subdivided into four equal-sized quadrants until 
obtaining leaf nodes that meet a specific criterion. In each case edges are not permitted 
to exist in more than one leaf node. This necessitates that each edge be divided into 

sub-edges, termed q-edges. The q-edges are formed by clipping the edge against the 
borders of each node it intersects. The leaf nodes of a PM1 quadtree (Figure 3.4a) must 
satisfy the following conditions - (a) contain, at most, one vertex; (b) if it contains a 
vertex, it cannot include a q-edge that does not include that vertex; and (c) if it 

contains no vertices, it can contain, at most, one q-edge. The record definition of each 
tree node is more complex for PM quadtrees than for the quadtrees previously 
described. It is necessary to include fields containing pointers to descriptions of any 
point or q-edge data that lies within it, in addition to the usual son pointer and node 
type fields. 

Each of the PM methods differs in its treatment of edge information, but none permits 
the storage of more than a single vertex in a leaf node. The PM2 quadtree replaces 
condition (b) of the PM1 leaf node definition by allowing leaf nodes that do not 
contain a vertex to contain more than a single q-edge, provided they meet at a common 
vertex (Figure 3.4b). The least restrictive is the PM3 quadtree (Figure 3.4c) which allows 
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any number of q-edges to be present within a given node. This approach is considered 
by Samet and Webber [34] to be the most useful of the PM quadtrees and can be used 
to store points, lines and polygons, without error. 

(Q) 

(b) 

(c) 

Figure 3.4 -The PM quadtree. (a) PMl. (b) PM2. (c) PM3. 

The quadtrees discussed so far, where the tree structure is explicitly defined, incur the 
storage overhead of having to store non-leaf nodes. An alternative approach is that of 
the pointerless, or linear, quadtree [36]. In this case only leaf nodes are stored and their 

position in the overall tree structure is identified by a unique key. The key, or address, 
of each leaf node is generated using numbering systems known as tesseral addresses 
[37]. Of these systems, Morton addressing [38] appears to be the most useful and most 
frequently used [23]. This addressing scheme (as with others) converts the 
two-dimensional xy-space, that is the quadtree cells represented by the leaf nodes, 
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into a one-dimensional list of integer keys. If the list of keys is sorted into ascending 
order, they trace a Peano space-filling curve (Figure 3.5). 

Figure 3.5 -A Peano space filling curve. 

An important characteristic of this method is that cells which are spatially close tend 
to have addresses close to each other. This is of use since, in general, geographical 
queries are locationally specific. The list of keys and associated data (which will 
depend on the type of quadtree being used, region or PM1 for example) can then be 

stored using a conventional database scheme. The example shown in Figure 3.6 
demonstrates how the quadtree given in Figure 3.3 can be represented as a linear 

quadtree. 

The Morton code of a quadtree cell is formed by bit-interleaving the x and y 

coordinates of its bottom left hand corner (or some similar convention). For example, 

consider a cell defined by the bottom left hand coordinate pair (x=3, y=4), the binary 

representation of which is (011,100). Interleaving the bits, with y arbitrarily deemed to 

be most significant, results in a binary Morton code of 100101, which converts to a 
decimal value of 37. 
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Decimal Binary Binary Decimal 
Region Coordinate Level Coord inate Morton Code Morton Code 

1 0 6 2 000 110 101000 40 
2 2 6 2 010 110 101100 44 
3 0 4 2 000 100 100000 32 
4 2 5 3 010 101 100110 38 
5 3 5 3 011 101 100111 39 
6 2 4 3 010 110 100100 36 
7 3 4 3 011 100 100101 37 
8 4 4 1 100 100 110000 48 
9 0 2 2 000 010 001000 8 
10 2 2 2 010 010 001100 12 
11 0 0 2 000 000 000000 0 
12 2 1 3 010 001 000110 6 
13 3 1 3 011 001 000111 7 
14 2 0 3 010 000 000100 4 
15 3 0 3 011 000 000101 5 
16 4 2 2 100 010 011000 24 
17 6 2 2 110 010 011100 28 
18 4 1 3 100 001 010010 18 
19 5 1 3 101 001 010011 19 
20 4 0 3 100 000 010000 16 
21 5 0 3 101 000 010001 17 
22 6 0 2 110 000 010100 20 

(a) 

Decimal Level 

02 
73 
82 
12 2 
18 3 
19 3 
24 2 
32 2 
36 3 
38 3 

(b) 

Figure 3.6 -A linear quadtree. (a) Addresses derived by bit-interleaving. (b) Possible 

storage representation. 

As well as the Morton key, it is also necessary to store for each leaf node the level at 
which the node appeared in the original tree. Without explicitly recording this 
information it would be impossible to deduce how large a particular quadtree cell was. 
For example, the shaded cells in Figure 3.7a and 3.7b are only distinguishable if the 
level at which they appear is recorded. 
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(h) 

Figure 3.7 - Two quadtree cells which cannot be distinguished without the level 

number being stored. (a) Level 1. (b) Level 2. 

Other variations of the quadtree have been devised, a comprehensive study of many of 
which is given by Samet [23,24]. The quadtree structures that have been reviewed in 
this section should however be sufficient to assist in a more clear understanding of later 

chapters. 

3.3.3 The R-tree. 

The R-tree [39] is a hierarchical data structure, derived from the B-tree [40], that 

provides an index mechanism which allows data items to be retrieved according to 
their spatial location. It is again based on the concept of the decomposition of space, in 
this case the decomposition being dynamic and dictated by the spatial objects 
themselves. 

The rules for building an R-tree are similar to those of a B-tree. All terminal, or leaf, 

nodes appear at the same level. Each leaf node contains one or more record entries of 
the form 

(I, object-id) 

such that I is the smallest rectangle that spatially contains the data object pointed to 
by the identifier object-id. Non-leaf nodes contain entries of the form 

(I, child_id) 

where child_id points to a node in the next lower level of the R-tree and I is the 
bounding rectangle of all the objects pointed to by the lower node entries. 

An R-tree of order (m, M) means that each node in the tree, excluding the root, contains 
between m (m <= M/2) and M entries. The root node has at least 2 children unless it is 
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Figure 3.8 - An example R-tree. (a) Eight objects. (b) Decompose into four regions. (c) The 

resulting R-tree. 

The following example demonstrates how an R-tree, with m=1 and M=3 say, is built. 
Consider the arrangement of objects shown in Figure 3.8a. There are eight objects, 
greater than the maximum number of entries allowed for each node, which is three. 
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Therefore the scene has to be decomposed. There are many suggested ways to 
decompose the object space (three of which are reported by Guttman [39]). One 

method is to minimise the total area of the bounding rectangles formed as a result of 
the decomposition. This can have the effect of reducing the average number of nodes 
visited during subsequent searches of the tree, when compared to other methods. 

In the example presented here, the object space is divided into two rectangular areas, 
Rl and R2, each containing four objects. Both Rl and R2 need to be decomposed 
further due to the fact that they also contain more than the maximum number of objects 
allowed. Four new regions, R3, R4, R5 and R6 are thus formed (Figure 3.8b). Each of 
these regions contains 2 objects. The corresponding nodes are therefore leaf nodes and 
contain pointers to the appropriate objects (Figure 3.8c). 

Any search upon the R-tree descends the tree from the root in a manner similar to a 
B-tree search (with the difference being that more than one sub-tree under a node 
visited may need to be searched). For example, consider a search for all objects lying 

within the query window as shown in Figure 3.9. 

Quer, rr === =ill 
8II Window 1 

Iý II 

r---- R2 
II3 III------I I 

III 
14 III 

iI R4 III R6 II 
I Iý =__ -JI 

611 
ý-= L_ _J 

Figure 3.9 - Searching for objects in a query window. 

The query window intersects Rl and therefore each of its child nodes need to be 

searched. R3 is also intersected giving objects 1 and 2 as possibly lying within the area 
of interest. R4 is not intersected by the query window and therefore objects 3 and 4 can 
be eliminated from the search. Finally, R2 does not lie within the query window and 
therefore no further search in this section of the tree need take place. 

An alternative to the R-tree is the R+-tree [41], which avoids overlap among bounding 

rectangles by splitting them into smaller sub-rectangles. The result is that there may be 

several paths starting at the root to the same object. This leads to an increase in the 
height of the tree, thus taking up more space. However, data retrieval time is speeded 

35 



www.manaraa.com

Chapter 3 Efficient Access to Spatial Data 

up. 

3.3.4 The Grid File. 

The grid file [42] is a spatial data structure based on the principle of dividing space 
into rectangles, which are not necessarily equal sized (Figure 3.10). Its main objectives 

are to retrieve records from disk with at most two disk accesses and to handle range 
queries efficiently. Rectangles, or grid blocks, are analogous to the cells of the fixed grid 

method, and each is related to an area of disk storage, known as a bucket. Buckets will 
have a fixed length, the length of which is defined in terms of the number of primary 
data items the bucket can accommodate. The form which the primary data item takes, 
be it a point, a line, a polygon or more complex object, is not of concern here. 

Grid Directory 

10 

8 

5 

0 

D " B" B 

D ý Eý E 

" 
C F 

" " A " 

046 10 

Linear scales 

x: 046 10 

y: 058 10 

Data Buckets 

Bucket Name Record 1 Record 2 

A 1.9,2.6 3.8,3.4 

B 4.8,8.7 

C 4.8,1.2 

D 1.7,5.2 

E 6.6,6.3 

F 7.1,1.2 0.9,9.6 

D B B 

D E E 

A C F 

Figure 3.10 - The grid file. In this example there is a bucket size of 2, with 9 grid blocks 

resulting in 6 storage buckets. Dashed lines partitioning rectangles indicate grid blocks 

sharing a data bucket. 

Efficient access to data buckets is provided by means of the Grid Directory, which 
consists of two parts. The first is a dynamic 2-D array containing one entry per grid 
block. The array element values are pointers to the relevant data buckets, which may in 

some circumstances be pointed to by more than one array element. Thus a data record 
may be retrieved in two disk accesses, one for each of the Grid Directory and data 
bucket. The second part of the Grid Directory consists of two 1-D arrays, called linear 

scales, which define the actual size of cells (grid blocks) in the x direction and y 
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direction. Thus spatial queries are supported via an initial search of these linear scales, 
which are usually located in main memory. 

The grid file has good dynamic properties. If a data item is added to a bucket which is 

not full, the update operation is trivial. Adding to buckets which are full can take one 
of two courses. If the bucket in question is referenced by more than one grid block, then 
the bucket may simply be divided into two buckets and the relevant Grid Directory 

entries updated. If the bucket is referenced by only a single grid block, then the insertion 

of the new data item will involve the creation of additional grid blocks. This is 

achieved by adding a division line to one of the linear scales. In the case of deletion, a 
merging process is carried out analogous to the splitting process for insertion. 

3.4 Summary and Conclusions. 
The main aim of this chapter has been to introduce the idea of spatial access data 

structures. This has been achieved through a review of four such data structures, 
namely, the fixed grid, the quadtree, the R-tree and the grid file. Two of these data 

structures form the basis of spatial access techniques employed in the data models and 
database implementations discussed in later chapters. An adaption of the fixed grid is 
used in the multi-scale data model described in Chapter 5 and the corresponding 
database implementations described in Chapter 6. The main reason for using the fixed 
grid is the ease with which it can be implemented. In Chapter 7a quadtree approach is 

adopted in the implementation of an Implicit TIN multi-scale database. In this case the 
quadtree is chosen due to its particular suitability to the Implicit TIN reconstruction 
algorithms. The reasons for choosing the fixed grid and quadtree methods are 
discussed in greater detail in the appropriate chapters. 
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4.1 Introduction. 

Maps are required, and therefore produced, at a variety of scales. Section 4.2 is 
concerned with topographic data and will begin by introducing the notion of scale, 
before going on briefly to discuss cartographic generalisation. Automated generalisation 
is then considered, with detailed consideration being given to automated line 

simplification. In particular, the Douglas-Peucker algorithm is described, its relative 
advantages and disadvantages being outlined. Following this, methods for storing 
topographic data at multiple scales are discussed, with mutli-scale data structures 
being looked at in detail. Section 4.3 concerns itself with the generalisation and multi- 
scale data representation of terrain data. Special attention is given to hierarchical 
triangulations, in particular the Delaunay pyramid. Finally, Section 4.4 gives a 
summary of the chapter and an indication of which of the algorithms and data 
structures are to be used in the design of the integrated multi-scale data model. 

4.2 Generalisation and Scale. 
Cartographic generalisation can be thought of as the transformation of the elements of 
a map so that it will remain legible and meaningful at reduced scale. The scale of a map 
will depend upon its intended use and the availability of suitable source data from 
which the generalised map is derived. At present most generalisation is carried out 
manually by expert cartographers and is arguably 'the most intellectually challenging 
task for the cartographer' [43]. 

4.2.1 Generalisation Operations. 
There are six main generalisation operations, namely, selection, combination, 
simplification, exaggeration, symbolisation and displacement [44,45,46,47,48] 
(Figure 4.1). For example, consider a group of polygons, representing a village perhaps, 
on a large scale map. On a small scale map certain of these polygons may not be 

considered significant enough to appear, and are therefore not included (selection). It 
may also be appropriate for those polygons that remain to be joined together in some 
way to form a single polygon (combination). At the next smallest scale the polygon 
could be replaced by a rectangle (simplification). Depending upon the intended use of 
the map, this rectangle might also be scaled in some way (exaggeration). At a still 
smaller scale the rectangle might be replaced by a single point (symbolisation). It may 
also prove necessary to move a map object (in this case a polygon, a rectangle or a 
point) during the generalisation process (displacement). This is because many objects in 

a map appear at a much larger scale than their true ground scale hence causing 
geographical interference. 

4.2.2 Automated Generalisation. 
A great deal of cartographic research is currently being carried out in an attempt to find 

39 



www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data 

automated solutions to each of the previously described generalisation operations with 
much work on the subject appearing in the literature (see, for example, [44,45,46,47, 
48]). For practical reasons, this thesis will restrict itself to dealing with line 
simplification. 

13 0 
HD ýý 

(a) 

oý K I 

(c) 

0 

(e) 

(d) 

" 

" 

(J) 

Figure 4.1 - The six main generalisation operations. (a) Selection. (b) Combination. 
(c) Simplification. (d) Exaggeration. (e) Symbolisation. (ft Displacement. 

4.2.3 Automated Line Simplification. 
When a small scale map is derived from a large scale geographic data set, only 
important objects are selected. This section is not concerned with how important 

objects come to be selected, it is assumed that this has already been done, either 
automatically or manually. However, the lines from which these objects are made up 
will often be too detailed at their original scale, the detail being lost due to the limited 

resolution of the required scale. It is better to use fewer points to represent the lines. It 
is therefore necessary to apply a line simplification algorithm to each of the lines from 

which the objects are made up. A number of techniques will now be reviewed. In each 
case no account is taken of the nature of the phenomena represented by the line (in 

reality a cartographer might use a different set of rules to simplify a line representing a 
river to those used for a line representing a road). 

(b) 

_H_ 
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4.2.3.1 Algorithm Overview. 
The generalisation, or simplification, of a line can be regarded as a reduction in its 
detail while maintaining its character. The degree of simplification will be reflected in 
the amount of detail removed and hence the scale suitability of the representation. 

When dealing with automated line simplification, two approaches can be taken, 
namely, point selection and smoothing. Point selection involves choosing points from 
the original line thought to be relevant at the smaller scale. Smoothing will invariably 
produce a simplified line which contains points not present in the source line. In this 
thesis generalisation is being performed in the wider context of a multi-scale data 

model, wherein data is to be minimised. It therefore follows that a smoothing algorithm 
is not suitable since points would be produced for inclusion in the smaller scale 
representation which are not included at the larger scale. This is not in keeping with the 
hierarchical distribution of points indicative of a multi-scale data model. It appears 
more appropriate to use a point selection algorithm. 

Reviews of line generalisation algorithms have been given by McMaster [49,50], 
Zoraster [51] and Abraham [52]. It is reported that point selection algorithms can be 
broadly classified into two groups, namely, global and local. Global point selection 
algorithms act upon the entire line as a single entity whereas local algorithms examine 
subsets of points in turn. 

A simple local line simplification algorithm is the nth point algorithm [531 which 
involves the selection of every nth point from the source line. The value of n can be 
adjusted to suit a specific scale. It has the advantage of being easy to implement but is 

widely recognised as not being cartographically correct. 

More sophisticated local algorithms have been produced, an example of which is that 

suggested by Jenks (54]. This considers sets of three points in turn and requires the user 
to define a minimum distance between points 1 and 2 (MINI), a minimum distance 
between points 1 and 3 (MIN2) and a minimum angle (MINA), defined with regards to 
an angle, A, subtended by the extension of line 12 (from point 1 to point 2) and line 23 
(Figure 4.2). If, for any given set of three points, line 12 is less than MINI and line 13 is 
less than MIN2, point 2 is rejected. If line 12 exceeds MINI but is less than MIN2, the 

angle A is inspected. If A is less than MINA then point 2 is rejected. 
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3 

angle A 

12 

MINI 

1 MIN2 

MINA 

Figure 4.2 - The criteria used in Jenks' line simplification algorithm. 

The algorithm starts with the first three points in the line and works its way along the 
line until point 3 is the last point in the line. A danger with this and similar methods is 

that slow curves will tend to be over-simplified. 

4.2.3.2 The Douglas-Peucker Algorithm. 
The global approach appears to offer results which are more satisfactory in 

cartographic terms. The Douglas-Peucker algorithm [55] is a global line generalisation 
algorithm which retains the shape information of a line as the number of points 
describing it is reduced [49] and at present seems to be the most widely used. Harris 
[56] concludes that this algorithm performs very well in a test designed to see if it 

would select the same critical points as a trained cartographer. 

The algorithm begins by taking the first and last points of the line entity (Figure 4.3a) 

and joining them by a straight line segment (Figure 4.3b). All intermediate points are 
then searched to find the point most distant from this line segment (Figure 4.3c). If this 
distance is less than or equal to a pre-defined tolerance value, the line can be 

represented by the first and last points. If however the distance exceeds the tolerance 

value, the line is split in two about the most distant point and two new line segments 
are formed (Figure 4.3d). One line segment will be defined by the first point and most 
distant point, the other by the most distant point and the last point. The two line 

segments are now considered in turn and dealt with in the same way as the original 
straight line. The procedure is repeated recursively until no line segment has 
intermediate points lying further away than the tolerance distance (Figures 4.3e to 
4.3g). 
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Figure 4.3 - The Douglas-Peucker algorithm applied to a line. (a) Original line. (b) 
Select first and last point. (c) Point 5 is most distant. (d) Distance of point 5 from line 

segment (1,7) exceeds tolerance value and therefore is selected for inclusion. (e) to (g) Repeat, 

recursively, for line segments (1,5) and (5,7). 

4.2.4 Representing Line Data at Multiple Scales. 
Access to line data at variable scales can be achieved either by storing multiple 
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versions of each line at predetermined scales; by storing a single large-scale version 
from which smaller scales are derived using generalisation algorithms; or by means of a 
multiresolution data structure specifically adapted to retrieving varying degrees of 
detail. Storage of multiple versions results in significant storage overheads owing to 
duplication of the constituent vertices between different versions. Retrieval from a 
single version could incur major processing overheads when deriving a representation of 
much smaller scale than the original line. 

Multiresolution data structures represent a compromise between the approaches. Two 

such data structures, specifically designed to store cartographic line data at multiple 
scales, are the line generalisation tree and the BLG-tree. 

4.2.4.1 The Line Generalisation Tree. 
The line generalisation tree [57,58,59], which is closely related to the strip tree [60], is 

a multiresolution data structure in which vertex duplication is minimised, while 
providing selective access to those vertices required for a particular scale 
representation. Each level in the tree corresponds to a particular level of scale 
significance, the required scales having been determined in advance. 

The tree is constructed by firstly assigning to each point a level of scale significance, 
using the Douglas-Peucker algorithm (or some other point selection algorithm), and then 

storing that point at its corresponding level in the tree. Therefore, at each level, only 
those points which are intermediate to points at the previous level in the tree are 
stored. The order of points within a linear feature can be maintained by either 
associating with each point a left and right control value which records the number of 
adjacent intermediate points at the next lower level or by storing a sequence number for 

each point which records its position in the original line. Although these methods 
introduce additional data in the form of either the control values or the sequence 
numbers, it significantly reduces the data overheads of multiple line storage [52]. An 

example of a line generalisation tree using sequence numbers is shown in Figure 4.4. 
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Figure 4.4 - The Line Generalisation Tree. The example shown consists of three levels and 
adopts the sequence number method. (a) Original line. (b) The result of applying the 

Douglas-Peucker algorithm. (c) The line generalisation tree representation. 

4.2.4.2 The BLG-tree. 

A data structure with close similarities to the line generalisation tree is the BLG-tree 
[61,62]. This is a binary tree in which each node represents a line segment 
accompanied by the most distant intermediate point of the original line, its distance, 

and pointers to the two line segments defined by its current start and end points and 
the intermediate point. The BLG-tree differs in particular from the line generalisation 
tree in that the latter employs discrete levels of generalisation. Figure 4.5, taken from 

van Oosterom [62], shows a line and its corresponding BLG-tree. 
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Figure 4.5 -A line and its corresponding BLG-tree. 

4.3 Hierarchical Surface Models. 
As is the case with topographic data, the resolution at which terrain data is required 
will often be dependent upon the application for which it is required. The same 
disadvantages associated with multiple representation and generalisation at run-time 
also apply. Therefore, a surface model capable of retrieving data according to the need 
of the application, with limited data, duplication and no necessity to perform 
generalisation at run-time, is required. Thus several hierarchical surface models, which 
attempt to meet these criteria, have been developed in recent years. Such hierarchical 

models are usually based on recursively subdividing the surface domain into nested 
triangulations or rectangles. Hierarchical surface models can therefore be classified into 
two distinct groups, namely, hierarchical triangulations and quadtree-like models [15]. 
Quadtree-like models (such as [63,64]), which make use of domain partition 
techniques based on rectangles, are suited only to uniformly sampled data points. It is 
the intention of the data model being designed to cater for irregularly sampled data. It 
therefore appears that a triangle-based hierarchical model offers the most flexible 
description of a topographic surface. 

4.3.1 Ternary and Quaternary Triangulations. 
The simplest, and most common, type of hierarchical triangulation schemes are the 
ternary and quaternary triangulations, examples of which are shown in Figures 4.6 and 
4.7 respectively. Consider a set S of points in the plane. A ternary triangulation of S is 
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represented by a ternary tree, the root of which corresponds to an initial enclosing 
triangle t1, whose vertices (PI, p2, p3) belong to S. All projections of unused points, S- 
(Pu' p21 p31 must be contained within t1. The remaining levels in the tree are a result of 
combining a currently unused point, pq, with the vertices (p;, pj, Pk) of its containing 
triangle, t,, to form three new triangles (p;, pq, pj), (p1, pq, Pk) and (pk, pq, p). These 
three additional triangles become the child triangles of t,, and each may in turn become 

parent triangles to three other child triangles. 

In a similar fashion, a quaternary triangulation of S is described by a quaternary tree, 
the root of which again corresponds to an enclosing triangle t1. Subsequent child 
triangles are formed by subdividing a triangle t,, defined by its vertices (p;, pj, Pk) into 
four subtriangles. This subdivision is achieved by firstly locating three unused points of 
S, py, pr and ps, which lie on, or near to, the mid-point of each of the edges of the 
parent triangle to-be t,. The points pi, Pj' Pk" Pq Pr and ps are then joined to form the 
four child triangles (pq, p;, P), (Pr' Pk' Ps), (Psi P1. Pq) and (pq, pr, p8). For both 
triangulation schemes, the process of subdividing will stop for a particular branch in 
the tree when either no more suitable remaining points can be found or the error Ei 

associated with the triangle t; currently being processed is less than or equal to a pre- 
defined threshold value E. The value of E;, the error associated with triangle t;, can be 

expressed as follows. Let Ui be the set of currently unused points of S whose 
projections lie within t;. Then, 

E; = max { e(p, ) I pj in U; }, where e(pj) =I foxy yj) - zi I. 

The function f uses the plane defined by the three vertices of ti to interpolate the z 
value for a given ()j, yj) coordinate pair, the stored z value of which is z,. 
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1) 

1 3 

Figure 4.6 -A ternary triangulation and its corresponding ternary tree. 

For the hierarchical triangulations described, it is seen that each triangle t;, not 
necessarily a leaf triangle, has an error E; associated with it. Therefore, when a 
triangulation is required at a specific resolution, defined in terms of an error threshold 
Et, it is only necessary to descend each branch of the tree to a depth where the error E; 
of the triangle tj at that level is less than or equal to Et. 

The ternary triangulation is well suited to handling irregularly distributed data but will 
be prone to produce triangles which are elongated. These long, thin triangles are 
undesirable since for the purposes of numerical interpolation and visualisation it is 

more appropriate to have triangles which are as equiangular as possible. When working 
with data points which are uniformly distributed, the quaternary triangulation is able 
to provide triangles which behave well with regards the equiangular requirement. 
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However, since a triangle in a quaternary triangulation may have more than one 
neighbour along one of its edges, it is liable to produce discontinuous surface 
approximations. 

1 

1) 

4 
3 

Figure 4.7 -A quaternary triangulation and its corresponding quaternary tree. 

4.3.2 Error-Directed Point Selection. 
A hierarchical triangulation is a surface approximation based on a subset of a given set 
of data points S. It is usual to have associated with the triangulation a maximum 
permissible error E, where E= max (E; }. It is desirable to optimise the triangulation 

with respect to the number of vertices included. Finding the optimal triangulation is not 
feasible since an exponential number of possible triangulations must be evaluated. 
However, the error-directed point selection method proposed by De Floriani et al [65] 
(hereafter referred to as De Floriani's point insertion algorithm), used as part of the 

process of building a ternary triangulation, while being non-optimal, is satisfactory 
with regards the number of points needed in the triangulation. In this method, the 
triangulation is built in a way similar to that of the previously described ternary 
triangulation. However, in this case the order in which points are inserted into the 
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triangulation is considered important. Therefore, for any triangle ti, with E; >E and Ui 

non-empty, a decision has to be made concerning which point p is to be chosen from Ui 
for insertion into ti. The principle is to choose that point which is furthest (vertically) 
from ti. This method of point selection can be regarded as a 2.5-D equivalent of the 
Douglas-Peucker algorithm. 

4.3.3 The Delaunay Pyramid. 
The ternary and quaternary triangulations, and certain other hierarchical triangulations, 
such as those presented by Gomez and Guzman [66], Barrera and Vazques [67] and 
De Floriani et al [65], are each deficient in one of two ways. They either produce 
approximations which are numerically inaccurate, because of the elongated shape of 
their constituent triangles, or are well-suited only to regularly sampled data [15]. A 
hierarchical model, provided by De Floriani, which overcomes these difficulties is the 
Delaunay pyramid [15]. As the name suggests, this is a hierarchical surface model 
based on the Delaunay triangulation, and is therefore suited to irregularly sampled 
data and produces the most equiangular set of triangles. The Delaunay pyramid, in its 

original form, consists of a hierarchy of Delaunay triangulations, each level of which 
contains progressively greater detail (Figure 4.8). Each triangulation Tj has an error E, 

associated with it. Therefore a pyramid consisting of m levels is represented by a 
sequence of Delaunay triangulations [To, T1, ......, Tm_1] where Ei <= E;. 1, i=1,2....., m- 
1. 

The pyramid is built from a set of points S by firstly constructing an initial constrained 
Delaunay triangulation. This will include those points of S which define the convex hull 

of S or are the most important surface-specific points (peaks, pits and passes) and 
lines (ridges and valleys). In the scheme described by De Floriani each triangle is 
defined by its three vertices and its three adjacent triangles (although it is pointed out 
that any other of the 9 possible triangle-vertex-point relationships could be used). 
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Figure 4.8 - An illustration showing the inter-level relationships that exist in the 
Delaunay pyramid. 

Pyramid construction proceeds by taking a currently unused point p from the set S, 

and adding it to the approximated surface, which is then re-triangulated. The point p 
is the point furthest away (vertically) from the approximated surface. The process of 
adding a point and re-triangulating is repeated until each triangle t has an associated 
error e less than or equal to E0. The next level, initially identical to the first level, is then 
created. Further points are added from S until the error threshold for that level is 

reached. New levels continue to be added to the pyramid until the most detailed level 
(level m-1) has been created to the required accuracy. 

It is likely that some of the triangles at a particular level will be completely retained in 

the next lower level or will differ only in regard to their adjacent triangles. The 
Delaunay pyramid overcomes data duplication by storing triangles as either internal, 

boundary or external. An internal triangle is defined by its vertices and its adjacent 
triangles. Boundary triangles will consist of a pointer to a parent triangle, from which 
its vertices will be obtained, and a reference to its three new adjacent triangles. An 
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external triangle is completely described by a pointer to a higher level triangle. Each 
triangle within a level also references those triangles at the next more detailed lower 
level which intersect it. This assists hierarchical spatial search within a Delaunay 

pyramid to determine which triangle a given point lies in. An example of a three-level 
Delaunay pyramid is given in Figure 4.8. 

It should be noted that the storage benefits gained by adopting the internal, boundary 

and external triangle approach is fully realised only when changes in detail between 

levels are small. This is because large changes in scale between successive levels will 
cause many of the triangles in the parent triangulation to be replaced by new, non 

space-saving internal triangles in the lower level triangulation. 

4.3.4 Adaptive Hierarchical Triangulation. 
The Delaunay pyramid, along with all terrain models based solely on Delaunay 
triangulation, tends to ignore the third dimension when deciding upon the topological 

relationship between points, and may therefore produce edges that contradict the 
topology of the surface being modelled. Scarlatos and Pavlidis [68] attempt to 

overcome this problem by proposing a non-Delaunay triangulation scheme, termed 
adaptive hierarchical triangulation, which produces a multiresolution terrain model 
that adapts itself to surface characteristics. However, this method does not appear to 
be suited to the inclusion of topographic (non-elevation) feature data in the model since 
the algorithm it employs is dependent upon all data points having an elevation value. 

4.3.5 The Constrained Delaunay Pyramid. 

To counter the apparent inadequacy of the Delaunay pyramid, De Floriani and Puppo 
[22] have proposed a dynamic, easy-to-code algorithm to produce a constrained 
Delaunay pyramid (CDP). The CDP modifies the original Delaunay pyramid by 

allowing insertion of chains of edges belonging to surface edges. The ability to introduce 

constraints into a pyramid ensures that specific linear features, such as valleys and 
ridges, can be retained as connected edges within each level of the pyramid. In 

principle, this mechanism for constraining the triangulation facilitates the inclusion 

within it of any point, line or polygon feature, whether physical or cultural. Details 

regarding the insertion of constraining edges into an existing triangulation have been 

given in Chapter 2. 

4.4 Summary and Conclusions. 

This chapter has attempted to provide an introduction to the subject of automated 

map generalisation. It has suggested that, at present, multi-scale data structures offer 
the most viable approach by which GIS can cater for spatial data at multiple levels of 
generalisation. Of the data structures described, two are selected for use in the 
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integrated multi-scale data model and database implementations described in later 

chapters. It is thought that at present terrain data can best be catered for by employing 
the error-directed point selection technique to assist in the construction of a CDP. 
Having decided to adopt the CDP approach for terrain data storage it follows that the 
line generalisation tree (in conjunction with the Douglas-Peucker algorithm) offers the 

most appropriate technique for storing (and producing) multiresolution line data. This 

is because the CDP and line generalisation tree both employ fixed levels of detail. It 

might be argued that the BLG-tree offers greater flexibility than the line generalisation 
tree in that detail levels are not fixed, and therefore a greater range of scales are 
immediately available for retrieval. However, the BLG-tree does not integrate well with 
the CDP in its present form. Note also that a partial generalisation at run-time 
approach, used in conjunction with the CDP and line generalisation tree, would 
provide for the retrieval of the full range of scales. This approach has been adopted in 
the scale-independent database presented by Abraham [52]. 
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5.1 Introduction. 

This chapter outlines the design of a data model, or data storage scheme, suited to the 

efficient storage and retrieval of terrain and topographical feature data at multiple 
scales. The data model, which is based upon several of the data structures described in 

earlier chapters, is described in Section 5.2. Section 5.3 provides detail, in pseudo-code 
form, of the data model construction algorithm. In light of recent criticism of the 
Douglas-Peucker algorithm, Section 5.4 provides a number of reasons as to why it has 

been adopted for use in this project. Section 5.5 draws attention to some of the 
limitations of the data model described in Section 5.2, and gives some indication as to 
how these limitations can be removed. A conclusion and chapter summary in given in 
Section 5.6. 

5.2 A Hierarchical Model for both Topographic and Terrain Data. 
Previous chapters have given details of data structures suited to either the efficient 
multi-scale storage of topographic feature data, such as the line generalisation tree, or 
to the efficient multi-scale storage of terrain data, such as the constrained Delaunay 

pyramid (CDP). The algorithms developed to produce generalised versions of 
topographic data and terrain data have also been reviewed. This section introduces a 
new data storage scheme, termed the Multiresolution Topographic Surface Model 
(MTSM), which allows for multi-scale storage of both data types in a single data 

model. 

5.2.1 Model Overview. 
The MTSM is a spatial access scheme suited to the efficient storage and retrieval of 
terrain and topographic data at multiple scales. Two previously described data 

structures, namely the CDP and the line generalisation tree, form the basis of the 

model. The CDP is chosen due to its ability to represent surfaces at multiple levels of 
detail; incorporate points located at arbitrary coordinates; and include constraining 
features. The line generalisation tree, as indicated in Section 4.4, is preferred to the 
BLG-tree due to the fact that, as with the CDP, it employs discrete levels of detail. 

The vertices, or points, from which the topographic data is made up (representing 

point, line and polygon features) are merged with the terrain points defining the surface 
to form a single data set. These combined points are then used to construct a CDP. 
Each line feature is represented by a line generalisation tree. A unique aspect of the 

work is the ability to include topologically structured features, such as pylons (point), 

railways (line) and county borders (polygon) within the pyramid. In the case of line 

and polygon features, these occur as chains of constrained edges within the pyramid. 
These are in addition to those surface features necessary to characterise the shape of 
the surface, such as ridges and valleys. 
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Point, line and polygon features, all of which are embedded as constraints within the 
pyramid, are arranged in a hierarchical manner. Each polygon is stored as a collection 
of references to one or more lines, each of which in turn reference, via a line 

generalisation tree, vertices within the pyramid. Point features are represented as direct 

references to these vertices. This approach is based on the point, line and polygon 
dictionary method described in Section 2.3.2. In certain cases, constrained edges within 
a triangulation may represent more than one feature. For example, a national boundary 

very often coincides with some physical boundary, such as a river. Furthermore, objects 
of interest may consist of sets of point, line and polygon features. This can be 
illustrated by considering a factory as an object of interest, which is itself made up 
from point, line and polygon features. To accommodate such occurrences, while at the 
same time minimising data duplication, an additional entity, referred to here as an 
object, is introduced into the data structure hierarchy. Each object maintains a list of 
pointers to the appropriate point, line and polygon features from which it is made up. 
For the first example, the physical boundary and the political boundary, each stored as 
a separate object, would refer to the same embedded feature or list of features. The 
factory, also stored as an object, would refer to each of its constituent point, line and 
polygon features. 

A diagrammatic summary of the MTSM is given in Figure 5.1. The Object List consists 
of a series of object descriptions, each of which represents a single object. Each object 
description is composed of a unique object identifier, attribute data which describes 

what the object is and to what class of object it belongs, plus a list of references to the 
polygon, line and point features from which the object is made up. Polygon 
descriptions, which are stored in the Polygon List, are each made up of a unique 
polygon identifier plus references to the relevant constituent line parts. Line 
descriptions are held in the Line Lists. The series of n line descriptions for a particular 
line correspond to the n levels of the line generalisation tree for that line. Each 
individual line description represents a single level in the line generalisation tree and is 
made up of a unique line identifier, a list of references to the points which become 

relevant at that level and a list of corresponding sequence numbers indicating the 
position of each point in the original line. 
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Figure 5.1 - The multiresolution topographic surface model. In this case the model is 

shown with n levels of scale. 
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The Point List stores a description for every point (terrain and topographic) 
represented in the data model. A point description comprises of a unique identifier, a 
value indicating the level at which the point is first included in the model and the x, y 
and z coordinates of that point. There is a Triangle List at each level of the data model. 
Each of these lists represent a level in the CDP and stores the details of each triangle 
present at that level. A triangle description at a particular level is made up of a unique 
triangle identifier, a value indicating what type of triangle is being represented at that 
level (internal, boundary or external) plus a reference to the appropriate description in 

either the Internal List or Boundary List. Each internal description holds the full 

geometry and adjacency information for internal triangles. Boundary descriptions store 
the adjacency information for boundary triangles. The Object Grids and Triangle Grids 

are described in the following section. The relationships between topographic data 
types is illustrated in the single-scale data model shown in Figure 5.2. With regards to 
topographic data it should be noted that no topological information is stored. 

DATA MODEL 
Object List 

MAP 2 

16 

4 

3 

Id Description lass Polygons Lines Points 

1 

2 

Severn 

Wal/Eng 

River 

order 

- 

- 

1,2 

1,2 

- 

- 

Polygon List 

Lines 

Line list 

Points 

1 

2 

3,4,5 

6,2,1 

Point List 

Id X Y 

1 500.0 200.0 
2 520.0 215.0 
3 470.0 120.0 
4 455.0 160.0 
5 485.0 174.0 
6 545.0 200.0 

Figure 5.2 -A single-scale topographic data model, made up from object, polygon, 
line and point entities. In this case there are no polygon parts. 

It is noted that Kraak and Gazdzicki [69] present a triangle based terrain model 
capable of representing both the terrain surface and spatial objects related to it. This 
model is applied to what they term Cartographic Terrain Modelling (CTM). The 
fundamental difference between CTM and the model presented in this chapter is that 
CTM is limited to single-scale representation of data. 
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5.2.2 Providing Spatial Access to the Model. 
It is important to ensure efficient access to the data model. Since the intended use of 
the model is to store spatially extensive data, spatial indexing of some sort is required. 
When deciding on a suitable indexing scheme an important consideration is the type of 
queries which will typically be presented to the eventual database. Two fundamental 

queries are of the form 'Retrieve all data of a particular type within a particular area' 
and 'What data items lie at a particular point V. Each of the four data structures 
reviewed in Section 3.3 have been shown in the literature to be suited to such queries. 
However, the parent triangle to child triangles pointer method employed by De Floriani 
[15] in the Delaunay pyramid would appear to be suited to only queries of the latter 
type. For the purposes of this thesis, two separate indexing techniques have been 
implemented. The first, a regular grid overlay scheme, is described in the following 

section. The second, based on the quadtree data structure, will be detailed in Chapter 
7. 

5.2.2.1 The Regular Grid Overlay Indexing Method. 
Efficient access to the hierarchical model is provided by introducing spatial indexing 
at each level in the pyramid. The method described here employs a regular grid overlay 
scheme, in which each grid cell maintains a list of references to all data which intersect 
it. This indexing technique, which is based on the fixed grid method (Section 3.3.1), 

replaces the parent triangle to child triangles pointer method employed by De Floriani 
[15]. The regular grid overlay technique differs from the fixed grid method in that 
whereas the cells in the latter correspond to areas of storage in which data items 
themselves are stored, the cells in the former contain references to data items which 
themselves are stored elsewhere. 

A decision has to be made as to which of the data in the model is to be spatially 
referenced. In order to arrive at this decision it is again necessary to consider the type 
of query the data model will have to satisfy. Four typical queries need to be catered for, 

namely 'Retrieve all objects within a particular area', 'Retrieve all triangles within a 
particular area', 'What object lies at a particular point ?' and 'What triangle lies at a 
particular point T. Therefore, it becomes apparent that spatial indexing is required on 
objects and triangles. Also, since the spatial extent of certain objects may differ 
between levels (due to the generalisation of constituent line parts) and certain triangles 

may be relevant to some levels in the pyramid and not to others, the spatial access 
structure has been separated into levels. Therefore, at each level in the pyramid there is 

a triangle grid (Figure 5.3a), referencing all triangles relevant to that level, and, similarly, 
an object grid, referencing all, objects (Figure 5.3b). 
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Figure 5.3 - Spatial indexing provided by the regular grid overlay method. (a) The 
Triangle Grid. (b) The Object Grid. 

An object or triangle is deemed to be related to a particular object cell or triangle cell, 
respectively, if any part of that object or triangle intersects the cell. Each cell 
description (Figure 5.1) will therefore consist of a x, y coordinate indicating the location 

of the cell plus a list of references to all objects or triangles which intersect that cell. It is 

clear that the number of cells in each spatial grid will determine the optimality of 
searching operations. A dense grid will, in general, be more efficient in terms of search 
time than a more refined grid. However, this benefit has to be weighed against the 
resulting increase in storage requirements. McCullagh and Ross [70], when using a 
similar type of grid structure to assist in constructing the Delaunay triangulation of a 
set of points, suggest a grid which allows an average of four points per cell. In the 
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model described here, the number of cells within each grid varies according to the total 
number of objects or triangles it references, following the approach described by 
Franklin [71] for indexing lines for detecting intersections. A temporary grid index, 

which references points, is also used for the purpose of efficient pyramid construction. 

5.2.2.2 A Discussion Concerning Spatial Indexing. 
Although the indexing scheme described in Section 5.2.2.1 lends itself to referencing all 
occurrences of objects, and triangles, within a specified area, it does not take into 

account the spatial extent of individual objects. Thus locationally specific retrievals 
involving areally extensive objects could lead to large amounts of unwanted data 
having to be read. This would be particularly true of high resolution data. This problem 
could be solved by ensuring that individual object components, that is, the point, line 

and polygon features from which an object is made up, be limited in size. This can be 

achieved by segmenting any overly extensive line features and polygon features (or to 
be more precise, the line features from which the polygon features are made up) into a 
series of less spatially extensive line features. For example, an object, representing a 
river, might originally have had a single reference to one spatially extensive line feature. 
After segmentation has taken place, the same object will now have a list of references 
to a series of less extensive line features, these having replaced the original line feature. 
In order to take full advantage of the data segmentation it would now also be 
necessary to spatially index line features, thus ensuring that only those relevant to a 
particular query are retrieved. A further enhancement of this structure would be to 
replace the regular sized grid with a data-adaptive indexing method such the bounding 

quadtree [72]. This would ensure that no single cell references more than a preset 
maximum amount of data (see Section 3.3.2). 

The issue of spatially segmenting line data within a multiresolution model is quite a 
topical one. The multi-scale line tree [52,58,59], an extension of the earlier line 

generalisation tree [57,58,59], provides efficient spatial access to line data at various 
scales. It achieves this by classifying the internal points of digitised lines into 
hierarchies of scale-specific levels, which are themselves spatially segmented in a data- 

adaptive manner, using quadtree cells. A recent data structure, the Reactive-tree [62, 
73], also provides efficient storage and retrieval of geometric objects at multiple levels 

of detail. By combining the R-tree [39], which provides efficient access to data objects 
by storing bounding rectangle information with each object, and the BLG-tree [61,62], 

the Reactive-tree allows both objects and the points making up the objects to be 

retrieved on the basis of position and scale. A more recently published paper by Becker 

et al [74] introduces the Priority Rectangle File (PR-file). Here, the points defining line 

and polygonal objects are assigned levels of scale significance using a line generalisation 

algorithm. These points are then stored in a data structure which combines certain 
aspects of the line generalisation tree and the R-file [75]. Here the possible retrieval of 
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unwanted data is minimised by limiting the maximum number of points contained 

within a single bounding rectangle, thus limiting the spatial extent of individual object 

parts. 

The type of spatial indexing method employed can be governed to a certain extent by 

the characteristics of the data that is being included in the model. If individual line 

features are likely to be spatially extensive it would be wise to consider a scheme which 
is able to spatially segment individual data items. However, it may be that relative to 

the total area being modelled, individual line features are not extensive. If this is the 

case it would appear sensible to remain with a more simple approach. The author, 

while admitting that the simplicity of his spatial access method is the sole motivating 
factor for its use, is unsure as to whether a more elaborate scheme would significantly 
improve the spatial search facilities provided by his model. It may be noted that the 

recent work by van Oosterom [62,73] and Becker et al [74] provides examples of 

multi-scale storage schemes which in the former case do not segment individual line 
features while in the latter case their component vertices are grouped into rectangular 

subdivisions. The relative efficiency of the two schemes is not known. 

5.2.3 The Selection of Critical Points. 
A method of deciding at which level, and then subsequently at all lower levels, a 
particular point first appears in the MTSM has to be established. It will be governed by 

either the point's relevance to a particular object or its significance in describing the 

surface. The Delaunay pyramid selects points by means of an error-directed point 
insertion algorithm (see Sections 4.3.2 and 4.3.3). Here, a point is included at a 
particular level if the vertical distance of that point from the approximated surface is 

greater than a given error tolerance for that level. In the MTSM, any point which does 

not form part of a topographic object will be dealt with in this way. 

Those remaining points, all of which form part of an object, present a more difficult 

problem. The level at which a particular point of a line feature is inserted can be 

generated by using a suitable line generalisation algorithm to classify the internal points 

of the line feature into a specified number of levels of scale-related significance. The 

method used here is that of Douglas and Peucker [55], which has proved successful in 

retaining the shape information of a line feature as the number of points describing it is 

reduced [49]. Another of its properties, essential in allowing a line feature to be stored 
hierarchically, is that points selected for small scales are a subset of those used in a 
larger scale representation. This algorithm is also suitable to some extent for simple 

polygonal shapes. Generalisation of the points of more complex polygonal features, 

such as buildings, into levels of scale significance cannot easily be achieved 

automatically. The level at which these points are inserted would, under the present 
version of our scheme, have to be determined manually. 
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It should be noted that each point forming part of a feature might also have a height 

value associated with it which is used to evaluate the point's significance in describing 

the surface. It is therefore possible that such points may be inserted at a higher level in 

the pyramid than the level originally indicated by the object generalisation procedure. 
Any object point which does not have a height value associated with it is assigned a 
NULL height value. 

5.3 An Algorithm for Building the Hierarchical Model. 
A pseudo-code algorithm for building the hierarchical model is given in Figure 5.4 

(Procedure CREATE_MULTI SCALE_MODEL). The algorithm makes use of a number 

procedures, most of which are self explanatory. However, the details of Procedure 

CREATE_CDP_LEVEL warrant special attention and are shown in Figure 5.5. 

The model is constructed from a set of points S, containing all points defining the 

surface and those forming part of an object, and a list of objects O. Each object is 

defined by a list of references to its constituent point, line and polygonal features. The 

algorithm begins by initialising each of the object and triangle grids. Next, a line 

generalisation tree is constructed for each line feature, individual points having been 

allocated a level of significance using the Douglas-Peucker algorithm. The algorithm 
then proceeds to construct a CDP from the set S and the list O. Polygonal features 

reference line features, which in turn reference points, via a line generalisation tree. Each 

point which forms part of an object must be included in S and also have a level flag 

associated with it. This level flag ensures that it is inserted at the correct level of the 

pyramid, although it is possible that the point is inserted at some higher level according 
to its importance in approximating the surface. Note that the procedure 
CREATE_INITIAL TRIANGULATION only considers those points H of S which have 

a height value associated with them. The procedure performs a Delaunay triangulation 

of those points which make up the convex hull of H. This has the effect of omitting 
from the multi-scale model any point which does not lie within the convex hull of H. 

The reason for adopting this approach is to ensure accuracy when interpolating height 

values for those object-defining points which do not initially have a height value. 

Each object is inserted into a triangulation by sequentially inserting each of its line and 

polygonal feature components (point components must already have been included). 
Line and polygonal features are inserted as a series of straight line segments. 
Algorithms for inserting points and straight line segments into a Delaunay triangulation 

are given in the literature (for example, [22,21]). Brief descriptions of two such 

methods have been given in Section 2.4.3.3 and Section 2.4.4, respectively. 
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Global Variables 

L- list of line definitions 
O- list of object definitions 
S- list of point definitions 

Procedure CREATE_MULTI_SCALE_MODEL(n, Error_V, Error_L) 

/* n- number of levels */ 
/* Error_V - array of vertical error tolerances */ 
/* Error L- array of lateral error tolerances */ 

For each level i 
INITIALISE-TRIANGLE-GRID(. 
INITIALISE-OBJECT-GRID(). 

Endfor. 
For each line 1 in L 

CREATE-LINE-GENERALISATION TREE(l, n, Error_L, lgt(l)). 
Endfor. 
For each level i 

ADD TO OBJECT_GRID(O, i). 
Endfor. 
CREATE INITIAL_TRIANGULATION(T1, S). 
For each level i 

CREATE_CDP_LEVEL(i, Ti, lgt, Error V(i)). 
ADD TO_TRIANGLE_GRID(T1, i). 
IfI* n, then 

COPY TRIANGULATION(Ti, Tj+l). 
Endif. 

Endfor. 

Endprocedure. 

Figure 5.4 - The MTSM algorithm. This algorithm constructs the hierarchical model from a 
set of points S and list of objects 0. 

Note that following the insertion of constraints at a particular level it is necessary to 
check if the triangulation at that level still lies within the required vertical error 
tolerance threshold. This check is included due to the fact that the insertion of 
constraining objects which contain, at the time, unused points can sometimes lead to an 
increase in vertical error. Additional surface describing points are added, if necessary, 
until the triangulation lies within the required threshold. 

64 



www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model 

Procedure CREATE CDP_LEVEL(i, Ti, lgt, Error_Tol) 

/* i- level number */ 
/* T1- triangulation at level i 
/* lgt - list of line generalisation trees 
/* Error_Tol - vertical error tolerance for level i 

Finished = FALSE. 
Do while (not Finished) 

FIND-NEXT-POINT-TO INSERT(p, errorp). 
If (point found) and (errorp > Error_Tol), then 

INSERT_POINT(p, T). 
Else 

Finished = TRUE. 
Endif. 

Endif. 
For each line 1 in lgt 

RECONSTRUCT_LINE(lgt(1), i, temp-line). 
For each currently unused point p at level i of lgt(l) 

If z value of p= NULL_VALUE, then 
INTERPOLATE HEIGHT(p, T). 

Endif. 
INSERT_POINT(p, T). 

Endfor. 
For each edge (pl, P2) in temp line 

INSERT_EDGE(pl, P2, Ti). 
Endfor. 

Endfor. 
Finished = FALSE. 
Do while (not Finished) 

FIND_NEXT_POINT_TO_INSERT(p, errorp). 
If (point found) and (errorp > Error_Tol), then 

INSERT_POINT(p, T). 
Else 

Finished = TRUE. 
Endif. 

Endif. 

Endprocedure. 

Figure 5.5 -A procedure to create a level in a CDP. 

The CDP algorithm as presented by De Floriani and Puppo [22] is restricted in that it 

only caters for non-intersecting straight line segments. This creates a problem when 
introducing topographic features into the pyramid because their constituent straight 
line segments can sometimes intersect each other. For example, this may occur when a 
road crosses over a county border. The MTSM algorithm makes provision for such 
occurrences by firstly introducing an additional point into the pyramid at the point of 
intersection of the two line segments (this point is given an interpolated elevation 
value), and then substituting the two original line segments with four replacement 
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segments. This process is illustrated in Figure 5.6. 

2 

10, 

It110 

Edge constraint (p1, p2) 
cannot be inserted since it 
intersects constraint (p3, p4). 

Figure 5.6- C 

The solution is to firstly 
delete constraint (p3, p4) and 
insert new point i at 
intersection of edge (pl, p2) 
and (p3, p4). 

'atering for intersecting cons 

Finally, insert four edge 
constraints, (p1, pi), (pi, 
p2), (p3, pi) and (pi, p4). 

training edges. 

5.4 Justification for Using the Douglas-Peucker Algorithm. 
In a number of recent papers [76,77,78,79] the Douglas-Peucker algorithm has been 

subjected to criticism with regards its role as a line generalisation algorithm. The main 
argument put forward is that the algorithm was originally intended for the purpose of 
point reduction, not line simplification, and hence cannot be expected to perform well 
in the role of line generalisation algorithm. Its current use in many GIS is therefore 
purported to be a misuse. The consensus of opinion, that is in these papers, is that 'the 
high performance of Douglas-Peucker 'algorithm in mathematical evaluations (as 
described by McMaster) may be interpreted as being indicative of its relative merits as 
a weeding algorithm, but not necessarily as evidence of its superiority as a 
generalisation algorithm' [76]. Indeed, far from the Douglas-Peucker algorithm being 
superior, several of the authors proceed to describe their own algorithms which they 
regard as better suited to the task of simplification. 

There are two main criticisms of the Douglas-Peucker algorithm. Firstly, it may only be 
used successfully when scale changes are small or modest [80,81,45]. The second 
criticism is that it may exhibit closing spikes or crossings that give a topologically 
distorted view of line morphology [82]. The author of this thesis is aware of these 
limitations but has persevered with the algorithm for two main reasons. Firstly, it is 
still, despite the criticism, the most widely used, and generally accepted as best, 

currently available line simplification algorithm (although this may change in future). 
Secondly, the Douglas-Peucker algorithm has the property of retaining original points at 
all stages of simplification and is therefore well suited to the multi-scale aspect of this 
thesis. In addition, a number of post-simplification routines are available which 
attempt to resolve some of the inadequacies of the algorithm. Muller [83] presents a 
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method for the removal of spikes; this thesis (Appendix 1) suggests a means by which 
spatial integrity can be restored when crossings occur; and several smoothing 
algorithms [52,84] have been developed which can extend the range of scale change 
over which the Douglas-Peucker algorithm may be successfully used. 

5.5 Limitations of the MTSM. 
It should be noted that with regard to the multiple scale representation of topographic 
data, the MTSM is restricted to the generalisation', and subsequent multi-scale 
representation, of line data. This design limitation is deliberate and has been governed 
by the author's decision to only consider the generalisation of line data in the thesis. 
However, for the model to be described as truly multi-scale it may be argued. that as 
more complex automated generalisation functions become available then the MTSM 

must be able to accommodate them. For example, the MTSM at present assumes that 
an object is present at every level of generalisation, and that it references the same 
polygon, line and point features in each case. However, in reality, this is not always the 
case. For example, certain objects at source-scale might not be deemed important 
enough to be included at all derived scales. Also, an object made up from a number of 
polygons at source-scale might be represented by a single polygon at a smaller scale. 
Similarly, a polygon will not always appear at every level, and will not always 
reference the same line parts at different levels. MTSM also assumes, incorrectly, that 
all line features appear at every level (albeit in generalised form). 

In order to facilitate these types of generalisation in the future an alternative data 

model is suggested. It differs from the MTSM in that it introduces the concept of object 
data and polygon data being separated into levels, which may be a subset of the total 
number of levels in the database. Each level will only reference those objects or 
polygons which are present at that level. Individual object and polygon descriptions 

will therefore be allowed to change between levels. The addition and deletion of line 
features between levels can be accommodated using the present MTSM design. 

It should also be pointed that the MTSM (or any multi-scale approach) is 
inappropriate when applying generalisation operations such as exaggeration, 
displacement and symbolisation to carry out large scale change. This is because the 
derived, smaller scale data is no longer, in a geometric sense, a subset of the large scale 
data. At present, a multiple representation approach would appear to be the only 
available technique capable of supporting these operations. This does not however rule 
out the use of the MTSM for separately representing each of the multiple 
representations across a sub-range of scales (see Section 10.3.1). 
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5.6 Summary and Conclusions. 
This chapter has presented a new data model, or data storage scheme, suited to the 

efficient multi-scale storage of terrain and topographic data. It has also described an 

algorithm which when applied to suitable source-scale data will create the data model. 
The data storage scheme has been based on two previously described multi-scale data 

structures, namely, the constrained Delaunay pyramid and the line generalisation tree. 

The data model is used as a basis for two multi-scale database implementations, 
descriptions and evaluations of which are given in Chapter 6. At this stage it is 

possible to make predictions, based on information already known about the data 

model on which the databases are based, as to what these evaluations will reveal. For 

example, the worst-case time complexity of the triangulation and constraining methods 
used in the data model creation algorithm is O(n2). This suggests that the time taken to 

create the multi-scale database will increase sharply as the number of points belonging 
to the model increases. This, however, is not considered to be a serious issue since the 
intended use of the multi-scale database is as a relatively permanent storage scheme, 
with database creation being a one-off event. Efficient update of the database is 
facilitated by the dynamic nature of the data model, thus avoiding the need to re-create 
the database when updates are required. It seems prudent that a thorough evaluation 
of the multi-scale databases should involve comparisons with the two alternative 
representation methods, namely, multiple representation and generalisation at run-time. 
It is expected that the multi-scale database will require less storage than multiple 
representation, but at the expense of a slower response time to scale-specific queries. 
Conversely, it is expected that the multi-scale database will provide a quicker response 
to database queries than a generalisation at run-time approach, but will incur the data 

storage overheads inherent in a multi-scale data structure. The extent to which data 

storage and query processing efficiency differs between the various representation 
methods will be reported in the next chapter. 
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6.1 Introduction. 

System Implementations 

Two prototype database systems, based on the data model and accompanying 
algorithm presented in the previous chapter, have been implemented. The first, a 
relational implementation, named the Multiresolution Topographic Surface Database 
1.0 (MTSD 1.0), is described in Section 6.2. The database system has been tested in 

experiments involving test data obtained from the British Geological Survey (BGS), the 

results and conclusions of which are included. Section 6.3 concerns itself with an ISAM 
implementation of the database system, named MTSD 2.0. This database system has 
been tested with the same test data as that used for MTSD 1.0. Database testing for 

each of the implementations includes storage-cost and query response-time evaluation. 
In each case the evaluation is by means of a comparison between the multi-scale 
database method and two alternative representation techniques, namely, multiple 
representation and generalisation at run-time. In conclusion, Section 6.4 provides a 
chapter summary and a comparison of the two implementations. 

6.2 A Prototype Relational Database Implementation - MTSD 1.0. 
The MTSM and associated algorithm have been implemented in C on a DEC Vax 8800 

machine. Objects, polygons, lines (and corresponding line generalisation trees), points, 
the spatial index grids and the constrained. Delaunay pyramid (CDP) are stored as 
tables within an ORACLE relational database management system (Figure 6.1). The 
database is built using aC program which makes use of the routines contained in each 
of five core C libraries. The reason for using the Vax machine for the prototype system 
was primarily that of convenience. At the start of the project the University's DEC Vax 
8800 was the most suitable machine available, offering considerable processing power, 
a number of high resolution workstations and a wide variety of useful library packages 
(including GKS and UNIRAS). Having decided to use the Vax, the choice of the 
ORACLE database as the main data receptacle appeared sensible as it offered a wide 
range of immediately available data storage and access facilities. The incentive 

governing the choice of C, as opposed to other available languages (such as Pascal and 
ADA), was based on the fact that C offered greater scope for future transportability to 
other machines. This was a particularly important factor in that even at an early stage 
in the project it was envisaged that all work would eventually be expected to run on a 
soon to become available UNIX-based SUN workstation. 

With this in mind, it was also necessary that the system be programmed in a modular 
fashion, thus ensuring that any future modifications to code, required as a result of 
transportation to another machine, could be as localised and restricted as possible. 
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Figure 6.1 - The relational database implementation (MTSD 1.0). 

The result of this was the creation of five core C libraries, namely the Data-Retrieval 

library, the Data_Transfer library, the Geometry library, the Triangulation library and 
Output library. The benefit of this modularisation becomes immediately apparent in 

Section 6.3, and again in Chapter 7 where advantage is taken of the re-usability of the 

routines contained within the core libraries. Also, much use is made of the C 'header 

file' which allows for global constants and global variables to be held in code separate 
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from the main program and core libraries. This feature, while not being of vital 
importance, again assists in easier transition between system versions. 

6.2.1 Database Description. 

The points from which the topographic data is made up are combined with the terrain 
data points to form a single set of points S. Each point belonging to S, having been 

assigned a unique identifier (point_id), is stored in the Point Table. Initially, the 
level-used flag for all surface points is assigned a null value while the level_used flag 

of line feature points is set to the level of significance assigned to it by the line 

generalisation algorithm. The level-used flag of all points is updated depending on 

which level in the database the point is first used. 

There is a Triangle Table at each level of the database. Each of these tables, 

representing a level in the CDP, stores the details of each triangle present at that level. 

Each triangle in the database is given an identification number (tri id) when it is 

created. It should be noted that if a triangle exists at more than one level (in the form of 

a boundary or external triangle in the lower level) it will have the same tri_id at each 
level. The tri_type flag is set to 0,1 or 2 depending on whether the triangle is internal, 
boundary or external, respectively. The geom_id field is used as a pointer to the 
appropriate record in either the Internal or the Boundary Table. The Internal Table 
holds the full geometry and adjacency information for internal triangles while the 
Boundary Table holds the adjacency information for boundary triangles. The vertices of 
boundary triangles are found by obtaining details from a higher level triangle. No 
External Table is required since the geometry and adjacency information of external 
triangles can be found by retrieving the details of the triangle with the same tri_id as it 
in the previous level of the database. 

There is also a Line Feature Table at each level of the database. Each Line Feature 
Table stores the line generalisation tree details pertaining to its level for each line 
feature. In each table an individual line feature (line-id) is described by a list of points 
(point_ids) and a corresponding list of sequence numbers (seq_nos). Polygon features 

are stored in the Polygon Table. Each polygon feature (polygon id) is described by a 
list of line features (line ids) from which it is made up. The Object Table contains the 
details of each object in the database. Each object is defined by an object identifier 
(object id), an object description (object desc), a list of object class identifiers 
(class-ids) and lists of the point (point ids), line (line-ids) and polygon (polygon-ids) 

features which make up that object. The object class identifiers are used to assist in 

thematic retrievals of information. 

The Object Grid Tables and Triangle Grid Tables correspond to the spatial grids 
detailed in 5.2.2.1. Each entry in a spatial table consists of the x, y coordinates 

72 



www.manaraa.com

Chapter 6 System Implementations 

(x_coord, y_coord) of the bottom left hand corner of the cell it represents and a list of 
objects or triangles (object_ids or tri_ids) which intersect that cell. The number of cells 
in the x and y direction of each object grid (object grid_x, object-grid-y) and each 
triangle grid (triangle-grid-x, triangle-grid-y) is stored in the Pyramid Table. This table 

also stores the lateral error (related to object resolution) and vertical error (related to 
terrain resolution) associated with each level. 

6.2.2 The Core Libraries. 

For reasons of portability and re-usability, the routines required to create MTSD 1.0 
have been modularised. Routines have been grouped together in a particular library on 
the basis of the type of operation they perform and upon an evaluation. of the 
likelihood of them having to be modified if they were to be transferred to a different 

machine. Each library will now be described in turn. Details of the main functions 

available in each library are given in Appendix 2. 

6.2.2.1 Data_Retrieval Library. 
This library contains low-level read/write procedures which interact directly with the 
database tables and make use of the Embedded SQL facilities available on the Vax. 
The procedures enable a variety of operations, such as retrieve the coordinates for a 
particular point_id from the Point Table (Figure 6.2), retrieve details for a particular 
tri id from the Triangle Table or retrieve the list of object ids contained within a 
particular cell of an Object Grid Table. These procedures are specifically designed to 
interface with the ORACLE database system used on the University's Vax machine. 

void 
get_values(point id, level_used, x -value, y _value, z_value) 
int point id; 
int *level_used; 
double *x_value, *y value, *z_value; 
{ 

EXEC SQL 
SELECT level used, x _value, y value, z_value 
INTO : *level_used, : *xvalue,: *y value,: *z_value 
FROM POINT TABLE 
WHERE point id = : point_id; 
return; 
errrpt : handle errorO; 

} 

Figure 6.2 - The MTSD 1.0 procedure for retrieving the values 

associated with a particular point. 

6.2.2.2 Data-Transfer Library. 

The Data_Transfer library contains higher-level read/write procedures which, instead 

of interacting directly with the database, interact with the procedures contained within 
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the Data_Retrieval library. The procedures within the Data_Transfer library carry out 
operations such as returning the geometry of a particular tri id or a list of object ids 

contained within a particular polygonal area. The library has been designed in such a 
way as to limit its dependency on where and how the data is actually stored. 

6.2.2.3 Geometry Library. 
Many of the techniques employed in the construction of MTSD 1.0 require geometrical 
routines, such as point-in-triangle and line intersection tests. Such routines are used 
many times and at many different stages of the construction process, and also seem 
likely to be re-used in any future application programs. It therefore seemed logical to 
store all such routines in a single library where they could be readily accessed by all 
other routines. 

6.2.2.4 Triangulation Library. 
This library contains a number of the basic functions required to perform a constrained 
Delaunay triangulation of a set of points, such as calculating the convex hull, inserting 

a point into an existing triangulation and inputting a constraining edge into a 
triangulation. 

6.2.2.5 Output Library. 

The Output library consists of a number of high-level computer graphics output 
primitives. The primitives perform operations such as draw an object or display a 
triangulation on the screen. In this implementation the routines interact with the 
UNIRAS graphics routines available on the Vax. 

6.2.3 An Implementation Issue. 
When creating the multi-scale database it is important to consider the method used for 

storing intermediate data. Two possible extremes exist, the first involving main memory 
storage. With this approach, the initial step will be to read all source data into main 
memory. The database creation program is now applied to this internal data and an 
internal multi-scale model produced. This multi-scale model, and any updated source 
data, is then sent to the ORACLE database. The second approach involves the 
database creation program acting directly on a continuously updated database. The 
first approach has the disadvantage that the maximum amount of data held in the 
database is equivalent to the maximum amount of data that can be held in main 
memory. The major disadvantage of the second approach is that database creation will 
involve a large number of database accesses, thus increasing the time taken to create 
the database when compared to the main memory approach (for more detail see [85]). 
For the purposes of this thesis, the first approach has been adopted, the reason for 

which is two-fold. Firstly, the data used in the system testing is not extensive, and can 
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be adequately catered for in main memory. Secondly, the Vax and SUN machines used 
in developing MTSD 1.0 and MTSD 2.0 (Section 6.3) employ virtual memory 
management systems, thus considerably increasing the capacity of main memory 
applications. 

6.2.4 Database Retrieval and Update. 
In order to test the prototype system a number of basic database retrieval operations 
have been implemented. The procedures used for these operations are held in the 
Data_Transfer library. These operations allow for the retrieval of triangles and 
topographic objects at specific levels of detail and for particular areas of interest. 
Three parameters are needed to define a query, the first indicating what type of 
information is to be retrieved. The information type is described in terms of an integer 

code value, with -1 referring to outcrop objects and 0 to triangles. The second query 
parameter indicates the level of detail at which the information is required and is 
defined by an integer value corresponding to the required level. The third parameter 
defines the area of interest over which information is required. This area is defined in 
terms of a bounding rectangle which is described by two x, y coordinate pairs, the first 

corresponding to the bottom left hand corner of the bounding rectangle, the second to 
the top right hand corner. As an example query, consider the retrieval of triangles at 
detail level 2, the area of interest being a 500m square region with bottom left hand 

corner coordinates (42000,21000). The corresponding MTSD 1.0 query would be (0,2, 
42000,21000,42500,21500). 

No database update operations are provided by the MTSD 1.0 system. It should be 

noted however that the primary data structures on which the database is based (the 
CDP, the line generalisation tree and the fixed grid) facilitate update. It therefore 
follows that the MTSD 1.0 will lend itself to the future inclusion of update operations. 
Note also that the point and edge insertion algorithms used in the creation of the CDP 

are themselves dynamic and could readily be adapted to allow for the insertion of new 
data. 

6.2.5 Testing MTSD 1.0. 

The system described has been tested using data acquired from BGS. Two types of 
data were involved, namely, geological outcrop map object data (referencing 

constituent polygon, line and point data) representing outcrop boundaries and fault 
lines, and terrain data in the form of irregular (x, y, z) point data. The test data covers 
a 2km x tkm square in the Grantham area of England. Plate 6.1 is a plot of the terrain 

points, of which there are 380. The outcrop data is shown in Plate 6.2 and consists of 
20 objects, which in turn reference a total of 20 polygons and 143 lines. The lines are 
made up from a total of 896 2-D feature points. 
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Plate 6.1 - Terrain points (380) forming part of test data set. 

Plate 6.2 - The outcrop data consistins of 20 objects (20 polt/c tJ? l , 14i lire; sind SL)h 

points). 
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A series of test databases have been created, details of which are given in Figure 6.3. In 

each case the lateral and vertical error tolerances have been chosen is such a way as to 

emphasise the difference in detail between the database levels. No attempt is made 
here at relating these error tolerances to what professional geographers regard as scale, 
although some thought is given to this topic in Section 10.3.1. The database creation 
time, similar for each of the databases, appears satisfactory (particularly in light of the 

argument presented in Section 5.6). Plates 6.3 to 6.8 show the three levels of the CDP 
forming part of Database 3. Note that only those object edges which lie completely 
within the convex hull of the terrain points are included as constraints (see Section 
5.3). 

Database 
Name 

Number 
of levels 

Vertical 
nor(m) 

Lateral 
Error (m) 

Number of 
terrain points 

Number of 
topographic points 

Number of 
edges 

Creation 
time (s) 

30.0 5.0 168 216 227 
1 3 12.5 2.5 48 90 317 304.0 

1.0 1.0 148 198 515 
35.0 8.5 158 157 161 

2 3 10.5 2.5 77 129 317 311.0 
1.0 1.0 

-- 
129 198 515 

1.1 77(7- 138 L( 
3 3 7.5 3.0 105 140 289 350.0 

Figure 6.3 - Database creation performance table for MTSD 1.0. 
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Plate 6.3 - Database 3, level 1 (vertical error = 40.0m, lateral error = 10.0m). Plan 

view. 

1% 

_"'1 

Plate 6.4 - Database 3, level 1 (vertical error = 40.0m, lateral error = 10.0m). Shaded, 

perspective view. 

78 



www.manaraa.com

Chapter 6 System Implementations 

Plate 6.5- Database 3, level 2 (vertical error = 7.5m, lateral error = 3.0m). Plan view. 

Plate 6.6 - Database 3, level 2 (vertical error = 7.5m, lateral error = 3.0m). Shaded, 

perspective view. 
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Plate 6.7 - Database 3, level 3 (vertical error = 0.5m, lateral error = 0.5m). Plan view. 

Plate 6.8 - Database 3, level 3 (vertical error = 0.5m, lateral error = 0.5m). Shaded, 

perspective view. 
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In order to further evaluate the multi-scale database approach a series of tests have 
been carried out to compare MTSD 1.0 with two alternative methods, namely, 
generalisation at run-time and multiple representation. These tests necessitated the 
creation of two test databases. The first, adopting a generalisation at run-time 
approach consists of tables in which the source-scale data set (that is, terrain and 
outcrop data) is stored. Subsequent scale-specific queries required application of the 
Douglas-Peucker algorithm and error-directed constrained triangulation algorithm, 
using the supplied lateral and vertical error tolerances. The multiple representation 
database approach, as with MTSD 1.0, involved application of these algorithms 
during the creation of the database. The multiple representation database differed 
from MTSD 1.0 in that at each level, full line and triangle descriptions were stored, as 
opposed to the line generalisation tree and CDP approach used in MTSD 1.0. 

Method Number 
of levels 

Vertical 
Error (m) 

Lateral 
Error (m) 

Storage used 
(K-bytes) 

Time taken 
to retrieve all 
triangles (s) 

Time taken 
to retrieve all 

objects (s) 
30.0 5.0 14.0 11.0 

MTSD 1.0 3 12.5 428 20.0 14.0 
1.0 10 29.0 17.0 

Generalisation 30.0 5-0 80.0 28.0 
at run-time. 

1 12.5 205 101.0 35.0 
1.0 1.0 130.0 46.0 

Multiple 30.0 5.0 12.0 7.0 

re resentation 
3 12.5 2.5 601 14.0 9.0 p in 

. -LO 1 15.0 1 10-5 
35.0 8.5 14.5 9.0 

MTSD 1.0 3 10.5 2.5 417 723.0 12.5 
1.0 1.0 31.0 21.0 

Generalisation 35.0 8.5 31.0 
at run-time 

1 10.5 2.5 205 36,0 
. 1.0 1.0 44.0 

lti M le 35.0 8.5 7.5 u p 
i 3 10.5 2.5 692 11.0 on representat 

40.0 10.0 12.0 7.0 
MTSD 1.0 3 7.5 3.0 457 25.0 14.5 

0.5 0.5 38.5 17.5 
Generalisation 40.0 10.0 89.5 28.0 

at run-time 
1 7.5 3.0 205 146.5 34.5 

. 0.5 0.5 197.0 46.0 
Multi le 400 10.0 9.0 11.5 p 

t ti 
3 7.5 3.0 748 12.0 13.0 a on represen 

Figure 6.4 - Results of comparison tests between MTSD 1.0, generalisation at run- 
time and multiple representation. 

The comparison tests are made in terms of storage efficiency and query-response time. 
The results, shown in Figure 6.4, are to some extent compatible with the performance 
predictions made in Chapter 5. The response time to scale-specific queries is 

significantly slower for the generalisation at run-time approach than the other methods, 
which is as expected. The multiple representation method offers better response time 
than MTSD 1.0, but not perhaps as much as had been expected. When considering 
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storage efficiency, the generalisation at run-time method appears a clear winner, as 
predicted, while MTSD 1.0 is considerably more efficient than the multiple 
representation approach. 

6.3 A Prototype ISAM Database Implementation - MTSD 2.0. 
It was decided that a second implementation, to run on a UNIX-based SUN 

workstation, was necessary. There were a number of reasons for this decision, the most 
important being that the work was being carried out in conjunction with other projects, 
at both the University and BGS, which were using UNIX-based workstations. - Other 

reasons included the better graphics capabilities offered by the University's SUN 

software in the form of PHIGS, an important factor in light of the long term move 
towards a 3-D system, and the performance improvements gained in a single-user RISC 

environment (as opposed to the multi-user environment encountered on the Vax). 

void 
get_values(point_id, level used, x _value, y -value, z_value) 
int point-id; 
int *level_used; 
double *x_value, *y_value, *z value; 

struct PrimaryPoint_DB single_point; 

single_point. vert_id=point_id; 
if (btRead(fd_pp, &single_point) != GOOD) 

dieO; 
*level_used=single_point. level used; 
*x value=single_point. x value; 
*y_value=single_point. y value; 
*z_value=single_point. z_value; 
return; 

Figure 6.5 - The MTSD 2.0 procedure for retrieving the values associated with a 
particular point. 

The change from Vax to SUN computer necessitated a change from ORACLE to some 
other means of basic data storage, as no ORACLE software was available on the SUN. 
Two options were duly considered. The first entailed developing in-house file handling 

routines, equivalent to those used in the ORACLE system, using the standard C 
input/output functions as the basic building blocks. The second was to make use of a 
C ISAM library which was installed on the SUN. The former option had the advantage 
that all routines could be written with the particular application in mind. A 
disadvantage was that carrying out this task would be time consuming. The ISAM 

option had the advantage of having an extensive set of pre-written C file handling 
functions, many of which matched directly to an equivalent ORACLE function used in 
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MTSD 1.0. In view of this last fact, the ISAM option was preferred. 

The ISAM implementation makes full advantage of the modular fashion in which the 
first implementation was written. The only libraries which needed extensive 

modification were the Data_Retrieval library (ISAM routines instead of embedded 
SQL) 'and the Output library (PHIGS replacing UNIRAS). For example, compare the 
ISAM coordinate retrieval procedure shown in Figure 6.5 with its ORACLE equivalent 
(Figure 6.2). The other libraries were transferred directly from the Vax and after only 
very minor alterations compiled and executed successfully. 

6.3.1 Database Description. 

The database design is almost identical to that of the relational system, with an ISAM 

file matching to each of the ORACLE tables. The information contained within each file 

is the same as that of its corresponding relational table. One slight difference is in the 

way the ISAM files handle the lists of point ids, line-ids, polygon-ids, seq_nos, 

object-ids and tri_ids. The relational database takes advantage of ORACLE's ability 
to store variable length character strings, with limited data redundancy. This enables 
lists of any length (up to an ORACLE defined limit) to be stored in a single record 
field. The ISAM library does not provide this facility and therefore an alternative 
arrangement was needed. The solution was to employ a chaining mechanism. Here, the 
lists are stored in fixed length integer arrays, the length of which (for each file type) has 

to be defined before the database is initialised. Any list whose number of entries is less 

than the length of its appropriate fixed length is stored in a single array. Lists which 

contain a number of entries greater than or equal to the maximum allowed are stored in 

a chain of arrays, the first of which is the originally intended array. The second array is 

contained in a newly created record, the key of which is stored in the last element of 
the first array. The value (and type) of the key will depend on the type of file being 

processed. A simple approach is to assign negative values to those keys corresponding 
to overflow records. Other records are created and linked together until the whole list 

is stored. 

6.3.2 Database Retrieval and Update. 

The database retrieval operations included in the MTSD 2.0 system are the same as 
those included in MTSD 1.0. Queries, defined in terms of three parameters (data type, 
level of detail and area of interest) allow triangles and topographic objects to be 

retrieved at specific scales and for particular regions of interest. As was the case with 
MTSD 1.0, no database update operations are provided. 
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6.3.3 Testing MTSD 2.0. 

The MTSD 2.0 system has been tested using the same test data as used in the testing 

of MTSD 1.0. Three databases have been created, details of which are given in Figure 
6.6. The database creation times, which offer an improvement when compared to 
MTSD 1.0, are again satisfactory. 

Database 
Name 

Number 
of levels 

Vertical 
rror(m) 

Lateral 
Error (m) 

Number of 
terrain points 

Number of 
topographic points 

Number of 
edges 

Creation 
time (s) 

30.0 5.0 168 216 227 
1 3 12.5 2.5 4 90 317 168.0 

1.0 1.0 148 198 515 
35.0 8.5 158 157 161 

2 3 10.5 2.5 77 129 317 189.0 
1.0 1.0 129 198 515 

40. 10. 1. 139 1 
3 3 7.5 3.0 105 140 289 203.0 

Figure 6.6 - Database creation performance table for MTSD 2.0. 

Figure 6.7 shows the results of comparison tests made between MTSD 2.0 and the two 
alternative representations, generalisation at run-time and multiple representation. The 

results are in line with those reported in 6.2.5. MTSD 2.0 performs better than 
generalisation at run-time with regard to response time to scale-specific queries, and 
requires significantly less storage space than multiple representation. On the other 
hand, MTSD 2.0 is slower to respond to queries than the multiple representation 
technique, and requires more storage space than generalisation at run-time. 
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Method Number 
of levels 

Vertical 
Error (m) 

Lateral 
Error (m) 

Storage used 
(K-bytes) 

Time taken 
to retrieve all 
triangles (s) 

Time taken 
to retrieve all 

objects (s) 

30.0 5.0 8.0 5.0 
MTSD 2.0 3 12.5 395 12.0 6.0 

1.0 17.0 8.0 
Generalisation 30.0 r, n 50.0 12.0 

at run-time 
1 12.5 7 -C; 

183 65.0 15.0 
. 1.0 1-0 81.0 19.0 

Multi le 30.0 5.0 5.0 4.0 p 
t ti 

3 12.5 2.5 560 5.5 4.0 represen a on 

35.0 8.5 7.5 4.5 
MTSD 2.0 3 10.5 2.5 386 13.5 6.5 

1.0 1.0 16.0 8.5 
Generalisation 35.0 8.5 48.0 14.0 

at run-time. 
1 10.5 2.5 183 63.0 16.0 

1.0 1.0 85.5 19.5 
Multiple 35.0 8.5 4.5 4.0 

re resentation 
3 10.5 2.5 554 5.5 4.5 p 

40.0 10.0 7.0 4.0 
MTSD 2.0 3 7.5 3.0 421 13.0 7.0 

0.5 0.5 18.5 9.0 
Generalisation 40.0 10.0 40.0 14.5 

at run-time 
1 7.5 3.0 183 70.0 17.0 

. 0.5 0.5 98.0 21.5 
Multiple 40.0 10.0 4.0 5.0 

re resentation 
3 7.5 3.0 594 5.0 5.5 p 

Figure 6.7- Results of comparison tests between MTSD 2.0, generalisation at run- 
time and multiple representation. 

6.4 Summary and Conclusions. 

This chapter has described two database system implementations, MTSD 1.0 and 
MTSD 2.0, which succeed in allowing terrain and topographic object data to be 

combined in a single database at multiple levels of detail. Points, lines and polygons 
are integrated with, and serve to constrain, a hierarchical triangulation (the CDP) 

which avoids data duplication. Multi-scale representation of line data is 

accommodated by adoption of the line generalisation tree method. Data is accessed 
via spatial grid indexes referencing topographic objects and the triangles that model 
the terrain surface. 

The database implementations have been subjected to several tests involving a test 
data set obtained from BGS. In comparison tests with two alternative multiple scale 
representation techniques, both MTSD 1.0 and MTSD 2.0 perform in a manner to be 

expected of systems based on multi-scale data structures. The multi-scale databases 

outperform a generalisation at run-time approach with regards query response-time, at 
the expense of increased data storage. Conversely, the multi-scale databases require 
less storage than a multiple representation approach, but do not perform as effectively 
in response to database queries. 
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When comparing MTSD 1.0 and MTSD 2.0 to each other, it becomes evident that the 
ISAM implementation (MTSD 2.0) offers better performance (in terms of creation time, 
storage requirements and query response time) than its ORACLE counterpart. 
However, the author believes that with regards database creation time and query 
response time the reason for the difference in performance has little to do with the 
relative effectiveness of a relational approach as opposed to an ISAM approach. A 

more likely explanation is to consider the performance difference as a by-product of 
the different environments in which the two methods have been implemented (that is, a 
multi-user Vax-based database as opposed to a single-user SUN-based database). For 

example, a series of benchmark tests involving the construction of a number of main- 
memory based constrained Delaunay pyramids show the SUN to considerably 
outperform the Vax. This would indicate that any differences between ISAM database 
implementation and ORACLE database implementation is to some extent influenced 
by the difference in the machines on which they were implemented. 

It could be argued that query response-times in both implementations are far from 

good. For example, a response time of 17 seconds when retrieving all triangles from 
level 3 of MTSD 2.0 Database 1 seems slow when taking into account how relatively 
small the test data set is. However, it should be noted that the emphasis of this 
research has been on the logical design rather than an optimal implementation of the 
multi-scale database. This chapter has shown that such a database is feasible and 
offers performance benefits when compared to its main alternatives. 
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7.1 Introduction. 

The Implicit TIN ' 

This chapter gives details concerning a recently developed surface representation 
technique termed the Implicit TIN. Section 7.2 gives explanation as to why the Implicit 
TIN was developed, while details of the original implementation are given in Section 
7.3. Several of the limitations of the original Implicit TIN are discussed in Section 7.4, 

which proceeds to describe a new, improved Implicit TIN scheme. This improved 

version is then used as the basis for an implicit multiresolution topographic surface 
database (I_MTSD), details of which are presented in Section 7.5. The performance of 
I_MTSD is discussed in Section 7.5, which includes comparison tests involving MTSD 
2.0. Finally, conclusions and summary are given in Section 7.6 

7.2 Motivation for the Implicit TIN. 
Data storage schemes based on conventional TIN data structures incur a storage 
overhead due to the fact that they represent the topology of the triangulation explicitly. 
This is true of the multiresolution data storage scheme presented in Chapters 5 and 6. 
Storing topology explicitly results in the fact that although TINs typically use many 
fewer points than their main alternative representation, the regular rectangular grid, 
they do not usually occupy much less data storage. This is demonstrated by the 
following example, taken from Kidner and Jones [86]. Consider a vertex-based TIN, 
derived from a regular grid DTM, where 10% of the original grid points are needed to 
represent the surface satisfactorily. If it is assumed that each x, y and z coordinate of 
every TIN point can be represented in the same storage space as each TIN topologic 
pointer value, then it has been shown in Section 2.4.3.2 that an edge-based TIN, made 
up from N points, requires a storage space of approximately 10N. This storage cost, 
10N, is equivalent to 100% of the original grid storage space, and therefore no storage 
saving has been achieved. A. triangle-based TIN will require even greater storage 
equivalent to 150% of the original grid storage, that is, a net increase in storage use. 

When the amount of data stored is not great this storage overhead does not prove a 
problem. However, the ever increasing demand of GIS users is resulting in the need for 

accurate terrain data at finer resolutions and at national levels, thus leading to very 
large quantities of data. Such vast volumes of data when stored in the conventional 
TIN format may exceed the storage limits of many systems. 

7.3 The Original Implicit TIN. 

The original Implicit TIN [86,87] differs from a conventional TIN in that only vertices 
are stored. In other words, in an Implicit TIN the topological relationships defining the 
triangulation are not explicitly recorded. TIN topology is reconstructed by a procedure 
if and when it is required. Thus a suitable triangulation procedure is required, which 
can itself be thought of as part of the Implicit TIN. 
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The Implicit TIN provides a highly compact storage scheme for representing surfaces 
when compared to a conventional TIN. It is however apparent that this advantage is at 
the cost of having to reconstruct TIN topology when required. With this in mind it is 
noted that many GIS operations concerning terrain data, such as profiling, visibility 
analysis, earthwork calculations and communication network siting, only require 
subsets of the complete data coverage. Therefore with regards the Implicit TIN it 
follows that for any particular operation, only the topology of points relating to the 
operation need be reconstructed. 

Kidner and Jones [86] propose a method for spatially specific reconstruction of TIN 
topology based on Delaunay triangulation. Elevation points are stored in a box-sort 

structure [70], which allows for fast access to required points. When an operation 
requires a surface reconstruction for a particular area of interest the grid cells covering 
this area can be directly accessed to determine all the vertices of the local TIN. A 

conventional Delaunay triangulation algorithm is then applied to these points resulting 
in an explicitly defined TIN. 

An important characteristic of the Delaunay triangulation is its uniqueness for a given 
set of points. When triangulating a subset of the original points however, the 
triangulation at the boundary of the subset cannot be guaranteed to be the same as that 
obtained in a global triangulation. This is because neighbouring vertices outside the 

" region of interest, which may affect the triangulation within the area of interest, are not 
taken into account. In an attempt to overcome this problem a provision is made to 
allow for a 'reasonable' margin of points around the area of interest by expanding the 
search window. This margin should be dependent upon the sparseness of the data 
within the terrain model. 

7.4 An Improved and Constrained Implicit TIN. 
The previously described implementation of the Implicit TIN is deficient in two ways. 
Firstly, in certain instances around the border of an area of interest, the derived 
triangulation will not conform to the uniqueness property of a Delaunay triangulation. 
This will sometimes occur despite the use of an expanded search window. Secondly, it 
makes no provision for the inclusion of linear constraints within a triangulation. In 

response to these inadequacies a modified version of the original was developed 
collaboratively by Jones, Kidner and Ware [881. The modifications were exploited in a 
multi-scale database which will be discussed in the Section 7.5. The next section will 
serve as an introduction and concern itself with a single-scale Implicit TIN. 

7.4.1 Database Design. 

The single-scale Implicit TIN consists of an ISAM database, used for storing permanent 
data (Figure 7.1), plus the constrained Delaunay triangulation routines required for 
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generating temporary data, that is, TIN topology. The ISAM database is made up from 
6 files. The Point File stores the x, y and z coordinate for each terrain point, each 
accessed via a unique identifier. The Object File stores details of surface constraining 
features. These features are defined in terms of their constituent polygons, lines and 
points which are stored in the Polygon, Line and Point Files respectively. 

Object Quadtree File 

Cell identifier. 
Cell size. 
Object list. 

Point Quadtre'e File 

Cell identifier. 
Cell size. 
Point list. 

Point File 

Point identifier. 
X value. 
Y value. 
7. vilue. 

Object File Polygon File Line File 

Object identifier. Polygon identifier. Line identifier 
Classification number. Line feature list. Point list. 
Polygon feature list. 
Line feature list. 
Point feature list. 

Figure 7.1 - Overview of the single-scale database. 

Two spatial indexes, the Point Quadtree File and Object Quadtree File, are employed. 
Each Point Quadtree cell references all terrain points which intersect it, whereas each 
Object Quadtree cell references all objects which intersect it. This simple quadtree 
approach is preferred to the regular grid overlay method of Section 5.2.2 for reasons 
which will become evident in the Section 7.4.2. Quadtree cells are identified using the 
Morton code method. In this implementation, the bottom left hand coordinates of each 
cell are bit-interleaved, to form the Morton code. This code, coupled with a record of 
the cell size, provides a means for uniquely identifying the location and extent of each 
cell. The reason for maintaining separate object and point quadtrees is due to a 
distinction between real world objects with name and class attributes and the lower 
level point geometry used to describe the objects. Many points will only be used for 
describing the ground surface and will not be part of the boundary of objects mapped 
onto that surface. 

7.4.2 The Implicit TIN Algorithm. 
This section presents an algorithm which constructs a constrained Delaunay TIN for a 

given query window. The triangulation is obtained in three stages. Initially, the 

algorithm uses the query window to generate a list of quadtree addresses (Figure 7.2). 
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(n) 

The Implicit TIN 

(b) 

Figure 7.2 - Quadtree addresses used to access relevant points and objects. (a) The 

query region with respect to the database. (b) The quadtree cells (and data) accessed in the 
database. 

These are used to access the relevant elevation points and constraining objects via the 

Point and Object Quadtrees. It should be noted that all data referenced by these 

quadtree cells are retrieved, not just the data that intersect the query window. Data 

which lies beyond these quadtree cells will be retrieved if required during triangulation. 
The advantage of using the quadtree approach, as opposed to the regular grid overlay 

scheme adopted in the MTSD systems, lies in the fact that where data is sparse, 

quadtree cells will be large. This means that if the nearest data to the edge of the query 

window is in fact distant it may still be in one of the originally generated quadtree cells. 
This limits the need to re-access the database during the subsequent triangulation. 

(n) (h) 

Figure 7.3 - Elevation and edge points stored in box-sort structure. (a) A bounding 

rectangle placed around quadtree cells. (b) Box-sort structure with referenced and empty cells. 
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The object data, consisting of a combination of polygons, lines and points, are reduced 
where appropriate to a list of edges. The vertices defining these edges are stored, 
together with the elevation points, in a main-memory based box-sort structure (Figure 
7.3). This regular grid structure provides spatial indexing in the course of triangulation. 

Procedure DELAUNAY TRIANGULATE 

/* TNBS - an array used to hold the list of Thiessen neighbours of a point 
/* NTN - the number of Thiessen neighbours a point has */ 

Define query region. 
Use region definition to generate the required quadtree addresses for 
both object data quadtree and height data quadtree. 
Read required data. Store objects as a sequential list of edges, each referencing two 
vertices. 
Store object vertices and height vertices in the box-sort data structure. 
Put all vertices VERTS (NUMBER_OF_VERTICES) 
on the TRIANGULATION-STACK. 
Initialise the stack pointer (STACK_POINTER = 1). 
Do While STACK_POINTER # NUMBER_OF_VERTICES 

Let CURRENT_POINT = top point 
of TRIANGULATION_STACK(STACK_POINTER). 
FIND_THIESSEN_NEIGHBOURS(CURRENT_POINT, TNBS, NTN). 
For each pair of Thiessen neighbours (Na, Nb) 

If both neighbours are outside of the query region, then 
If external edge (Na, Nb) intersects the query region, then 

If Na has not already been triangulated, then 
NUMBER_OF_VERTICES = NUMBER_OF_VERTICES + 1. 
TRIANGULATION_STACK(NUMBER_OF_VERTICES) = Na. 

Endif. 
If Nb has not already been triangulated, then 

NUMBER_OF_VERTICES = NUMBER_OF_VERTICES + 1. 
TRIANGULATION_STACK(NUMBER_OF_VERTICES) = Nb. 

Endif. 
Endif. 

Endif. 
Endfor. 
Add CURRENT_POINT and Thiessen neighbours (TNBS) to the TIN. 
STACK_POINTER = STACK POINTER + 1. 

Enddo. 

Endprocedure. 

Figure 7.4 - The procedure to carry out Implicit Delaunay triangulation. 

The second stage involves the construction of the Delaunay triangulation of all relevant 
vertices, from both elevation data and constraining objects (see Procedure 

DELAUNAY TRIANGULATE, Figure 7.4). Points that lie inside the query region will 
always belong to the final triangulation, so initially these points are placed on a stack 
TRIANGULATION_STACK of points to be triangulated. The Thiessen neighbours of 
each point CURRENT_POINT on the stack are then found in the following way (see 
Figure 7.5). The nearest neighbour, NNB, of CURRENT_POINT is regarded as the first 
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Thiessen neighbour. The next Thiessen neighbour K to the right of the edge 
(CURRENT_POINT, NNB), a Delaunay edge, is then found and added to the list of 
Thiessen neighbours. The Thiessen neighbour to the right of the edge 
(CURRENT_POINT, K), also a Delaunay edge, is then found. The process is repeated 
until the latest neighbour K is equal to the original neighbour NNB. The search for 
Thiessen neighbours makes use of the box-sort data structure, such that only points 
within the vicinity of a Delaunay edge are tested. If the search for a Thiessen neighbour 
includes box-sort cells which are empty (that is, lie outside the generated quadtree 
region) or extends beyond the box-sort coverage, the required quadtree cells, in the 
database intersected by the local search region are accessed and the necessary vertex 
information is retrieved (Figure 7.6). 
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Procedure FIND_THIESSEN_NEIGHBOURS(CURRENT_POINT, TNBS, NTN) 

/* TNBS - an array used to hold the list of Thiessen neighbours of a point 
/* NTN - the number of Thiessen neighbours a point has */ 
/* NNB - the nearest point (neighbour) to the CURRENT_POINT */ 

Initialise SEARCH_AREA (in terms of box-sort cells). 
FOUND = 0. 
Do While NOT FOUND 

Check SEARCH_AREA for nearest point (NNB) to CURRENT-POINT. 
If NNB was found, then 

FOUND = 1. 
Else 

Expand SEARCH_AREA. 
If SEARCH_AREA now extends outside the buffer limits, then 

Generate quadtree addresses for external region and read data into 
appropriate external cell. 

Endif. 
Endif. 

Enddo. 
NTN=1. 
TNBS[NTN] = NNB. 
J= NNB. 
FINISHED = 0. 
Do While NOT FINISHED 

Initialise SEARCH AREA. 
FOUND = 0. 
Do While NOT FOUND 

Check SEARCH-AREA for Thiessen neighbour (K) 
of edge (CURRENT_POINT, J). 
If K was found, then 

. FOUND = 1. 
Else 

Expand SEARCH AREA. 
If SEARCH AREA now extends outside the buffer limits, then 

Generate quadtree addresses for external region and read data into 
appropriate external cell. 

Endif. 
Endif. 

Enddo. 
If K* NNB, then 

NTN=NTN+1. 
TNBS[NTN] = K. 
J=K. 

Else 
FINISHED = 1. 

Endif. 
Enddo. 

Endprocedure. 

Figure 7.5 - The procedure to find the Thiessen neighbours of a point. 
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When all Thiessen neighbours of CURRENT_POINT have been found, the point is 

removed from the stack and added, together with its list of neighbours, to a list of 

processed points. This list, when complete, forms a vertex-based TIN. The next point 
from the TRIANGULATION STACK now becomes the CURRENT_POINT and its 

Thiessen neighbours are found in like fashion. The process is repeated until the 
TRIANGULATION_STACK is emptied. 

External Region 
(Data not always in memory) 

(u) 

(h) 

Query Region 
(Data in memory) 

External data read 
into n enior v 

I) it. i alýný. ýýýti in mrmOrv' 

Figure 7.6 - Retrieving data from database during triangulation. (a) The search for 

vertices extends beyond the query region. (b) The search region is mapped into quadtree 
addresses. 
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Figure 7.7 - The triangulation of all vertices within a query region. Note that coverage 
is not complete in the bottom two corners. 

A triangulation of all points lying inside the query region will not guarantee a complete 
TIN coverage over that region. There is the possibility of parts of the query window not 
being covered, especially in its corners where a Delaunay edge might cross the window 
but both its vertices are outside (Figure 7.7). The algorithm caters for such occurrences 
by checking for such edges, termed external edges, and when found, adding the vertices 
belonging to the edges to the stack of vertices to be triangulated. Thus when the 

triangulation is complete, triangles will have been constructed on both sides of all such 

edges (Figure 7.8). This process introduces unrequired edges, which can either be 

retained or discarded. Such an edge is distinguished from other edges by the fact that 

one of its endpoints has no neighbour. Figure 7.9 illustrates the process of dealing with 

an external edge. 

Figure 7.8 - The final Delaunay triangulation of the query region. 
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(a) (h) (C) 

The Implicit TIN - 

Figure 7.9 - Test for complete coverage and resolution of completeness by 

triangulation of external vertices. (a) External edge intersection. (b) Triangulation of 
external vertices. (c) Removal (f unrequired edges. 

The final stage in the triangulation process is to insert the linear constraints of all 

objects which lie within or intersect the current TIN (see Procedure 
CONSTRAIN_TRIANGULATION, Figure 7.10). 
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Procedure CONSTRAIN_TRIANGULATION 

For each constraining edge A to B 
If edge not already in the TIN, then 

Identify all points which have 1 or more links that intersect the edge (A, B), 
keeping a record of the distance the point of intersection, of each point, is from 
A (for points with more than 1 intersection, it is only necessary to store 1 distance). 
Delete each points intersecting links. 
Split the points into 2 sets, S1 and S2, each containing points lying either 
side of (A, B). 
Sort S1 with respect to intersection distance from A. 
Sort S2 with respect to intersection distance from B. 
Add A to the list of neighbours of B. 
Add B to the list of neighbours of A. 
TRIANGULATE_POLYGON(A, B, Si). 
TRIANGULATE POLYGON(B, A, S2). 

Endif. 
Endfor. 

Endprocedure. 

Procedure TRIANGULATE POLYGON(P1, P2, S). 

Find all points not in current TIN but which belong to polygon of influence of 
(P1, P2), store in V. 
Search S and V for the point Q with largest subtended angle to edge (P1, P2). 
If Q not already in TIN, then 

Add Q to TIN. 
Endif. 
Add P1 to the list of neighbours of Q. 
Add P2 to the list of neighbours of Q. 
Add Q to the list of neighbours of P1. 
Add Q to the list of neighbours of P2. 
If Q is in S, then 

If edge (P1, Q) is not an edge in original TIN, then 
Create set S3, containing points in S lying between P1 and Q. 
TRIANGULATE POLYGON(P1, Q, S3). 

Endif. 
If edge (P2, Q) is not an edge in original TIN, then 

Create set S4, containing points in S lying between Q and P2. 
TRIANGULATE_POLYGON(Q, P2, S4). 

Endif. 
Else 

If edge (P1, Q) intersects original TIN, then 
TRIANGULATE POL 

Endif. 
If edge (P2, Q) intersects original TIN, then 

TRIANGULATE_POLYGON(Q, P2, S). 
Endif. 

Endif. 

Endprocedure. 

Figure 7.10 - The procedure to implicitly constrain a Delaunay triangulation. Also 
included is a procedure to Delaunay triangulate a polygon. 
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Each constraining edge (pl, p2) can have one of five possible states : (i) pl and p2 are 
both vertices within the TIN and form a Delaunay edge; (ii) pl and p2 are both vertices 
within the TIN but are not connected; (iii) either pl or p2 is a TIN vertex whilst the 
other is external to the TIN; (iv) both pl and p2 are external to the TIN; or (v) any of 
the cases (i) - (iv) but where the constraining edge passes through a concavity or a hole 
in the triangulation. Cases (i) and (ii) are the most likely, the probabilities of each 
depending upon the density at which the elevation and object data are sampled. In the 
first instance (i), the segment exists within the TIN and therefore no update is 

necessary. In the other cases the segment does not exist and therefore the TIN must be 

constrained (Figure 7.11). 

i 

Figure 7.11 - Constrained edge insertion within a TIN. (a) Identify intersecting edges 
(dashed lines). (b) Delete edges. (c) Re-triangulate around constrained edge. 
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For a constraining segment (p1, p2) with both vertices within the TIN but not connected, 
that is case (ii), the procedure for inserting the edge can be broken down into four 

steps. The first consists of determining the current edges which are intersected by the 
constraint (Figure 7.11a). Step two proceeds to delete these edges (Figure 7.11b), while 
the third step involves re-triangulating around the new edge (Figure 7.11c). Finally, step 
four deals with updating the TIN data structure. 

3 

Pl 

p2 

3 

Pl 

P 
2 

3 

Pl 

3 

Pl 

Figure 7.12 - Triangulation within a polygon around a constrained edge. (a) The 

polygon, (pj, 1,2,3,4,5,6, p21 p1), to be triangulated. (b) Point 5 subtends largest angle to 
base edge. Thus two new polygons formed. (c) - (d) Subsequent sub-polygons treated 

recursively. 

The problem of re-triangulating around the constraining edge is reduced to that of 
separately triangulating the two polygons formed either side of the edge. These 
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polygons are sometimes referred to as the polygons of influence [22]. The triangulation 

of each polygon proceeds as follows. Consider the edge (pl, p2) to be the base edge of 
the polygon. The initial step is to find the vertex Q of the polygon, discounting the 

vertices pl and p21 which subtends the largest angle to the base edge. For the upper 

polygon in Figure 7.12a this is vertex 5. This vertex is added to the list of neighbours of 
both pl and p2, and similarly pl and p2 become neighbours of vertex 5. Two sub- 

polygons have now been formed with base edge (p1,5) and (5, p2) respectively (Figure 

7.12b). The two sub-polygons, and any subsequent sub-polygons, are dealt with, 

recursively, in the same way as the original polygon (Figures 7.12c - 7.12d). The 

recursion continues along a particular path until the latest new edge matches an edge in 

the original TIN. 

For case (iii), where a constraining segment has one vertex in the TIN and the second 
outside, the procedure is similar, but the polygon of influence may now include vertices 

outside the original TIN. For example, consider the insertion of the highlighted segment 
(Pl, p2) in Figure 7.13a. Here, as before, the search for the vertex Q with largest 

subtended angle involves examining the vertices making up the polygon of influence 
(discounting pl and p2), which in this case includes the external point pi (Figure 7.13b). 

The recursive procedure in this case continues along a particular path until either the 
latest edge matches an edge in the original TIN or the latest edge fails to intersect the 

original TIN (Figure 7.13c). 

Pl 

P2 
P2 

pl pi 

n 

(a) (b) (c) 

Pz 

Figure 7.13 - Insertion of edge with one external vertex. (a) Vertex p2 external to TIN. 

(b) Need to include all external vertices making up the polygon of influence, including 

external vertices, in search for Q. (c) Edge has been inserted. 

The fourth possible situation, case (iv), is where both vertices of the constraining edge 
lie outside the original TIN. The procedure for inserting such an edge follows that of 

case (iii) as shown in Figure 7.14. 
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Figure 7.14 - Insertion of an edge with two external vertices. (a)Triangulation prior to 
insertion of constraint. (b) Triangulation after insertion. 

In some cases the Implicit TIN algorithm will produce triangulations containing holes, 
due to triangles crossing concave regions of a query window. The algorithm has been 

designed to handle query windows that are themselves concave in shape or include a 
hole. Introducing a constraint which passes through such a hole or concavity is catered 
for by using the methods for case (iii) and case (iv), as shown in Figure 7.15. 

Pl 
p 

pi 
2 

(a) (b) 

P2 

Figure 7.15 - Insertion of an edge through a hole in the triangulation. (a) Triangulation 

before insertion of constraint. (b) Triangulation after insertion of constraint. Notice that a part 
of the hole remains un-triangulated since it does not influence the query region. 

7.4.3 Triangulating within a Restricted Region. 

To construct TIN topology for any query the algorithm in the previous section requires 

an initial vertex to start the triangulation process. In most cases an arbitrary vertex 
from within the query window is chosen (the vertex which happens to be on the top of 
the TRIANGULATION_STACK). However, in certain circumstances, no vertices lie 

within the initial query window. This situation may arise if the query window is 
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narrow, or has no width as in the case of a profile. In such a case the initial vertex can 
be found in a number of ways. One method is to find the nearest neighbour of the 

centre of gravity of the points defining the query window. Another method is to search 
for a straight line segment (constraint) that crosses the query window and to select one 
of its bounding vertices. This would have to act as a preliminary method in that it will 
of course only work if there is an intersecting constraint. When an initial vertex is 
found, the algorithm proceeds to find its Thiessen neighbours. Each connecting edge 
(initial vertex to Thiessen neighbour) is then tested for intersection with the query 
window. If intersection does occur the neighbour is placed on the 
TRIANGULATION_STACK. If one or more intersections are found the remaining TIN 

can be constructed as in Procedure DELAUNAY_TRIANGULATE. If no intersecting 

edge is found another 'initial' vertex in the vicinity must be selected and the procedure 
repeated. The case where the query region is completely contained within a Delaunay 
triangle, that is, there are no intersecting edges, must also be catered for. This is 

achieved by finding the Thiessen neighbours of the vertex closest to the query region. 
One of the triangles thus formed must contain the query region. 

7.4.4 Implicit TIN Flexibility. 
It should be noted that storage saving is not the only advantage gained by using the 
Implicit TIN. The method also provides adaptability in allowing for selection of 
specific features for integration into a triangulation. Thus constraints on the terrain 
model are not predetermined, as they would be in an explicitly defined TIN. 

The line features to be included in the database can be grouped into two categories. 
Firstly, there are those which can be described as structural. Such features, when 
included as constraints in a terrain model, will improve the accuracy of the model in 
describing the form of the terrain. Lines that describe phenomena such as ridges, 
valleys and breaks of slope fall into the category. Also included are any lines that 
describe physical objects, such as roads, rivers and the outlines of buildings. The 

second category of line features are those which are non-structural. These lines are 
distinguished by the fact that they do not add to the accuracy of the surface 
representation, but are used as constraints merely to facilitate visual display of the 
surface. A typical non-structural line could, for example, represent an administrative 
boundary (which may in some circumstances coincide with structural lines). 

The significance of distinguishing between line features in this way is that it offers a 
measure of flexibility when producing a topographic surface. When structural lines are 
initially added to the database, their vertices are added to the terrain data and the 
lines labelled as necessary constraints. This will ensure that such lines will always be 
included as constraints when TIN topology is constructed. In contrast to this, non- 
structural lines can be labelled as not always necessary constraints, and as such are 
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only included in a TIN when a particular query requires their presence. 

7.5 The Implicit TIN in a Multiresolution Environment. 

The Implicit TIN algorithm from the previous section has been adapted to form part of 

an experimental multi-scale database (I_MTSD), details of which are given by Jones, 

Kidner and Ware [88]. This database can be regarded as the implicit equivalent to the 

MTSD 2.0 described in Chapter 6. 

7.5.1 Database Design and Construction. 

The database is partitioned into n levels, each representing the topographic surface at a 
different resolution. The top level (level 0) represents the coarsest resolution and the 

bottom level (level n-1) the finest resolution. The database is initially constructed in a 

way similar to the construction of the conventional MTSD. Points forming part of a 
topographic feature are assigned a level of significance using the Douglas-Peucker 

algorithm, while the terrain points are assigned their level of significance as a result of 

applying De Floriani's point insertion algorithm. The implicit version differs from the 

conventional in that when pyramid construction is complete (that is, all points have 

been assigned a level of significance), all TIN topology is discarded. This topology is re- 

constructed, where and when required, by applying the Implicit TIN algorithm. Figure 
7.16 illustrates the main components of the database and will now be explained. 

The Information File stores the lateral error (related to object resolution) and the 

vertical error (related to terrain resolution) associated with each level and a record of 
the number of levels in the database. The Point Files, with one file at each database 

level, store a point identifier and x, y and z coordinate for each vertex. The Point File 

at a particular level will only record information pertaining to points whose level of 

significance matches to that level. Also, vertices that define non-structural line features 

are assigned a null z-value. When such vertices are included in a TIN construction their 

z coordinates are interpolated from the terrain elevation data. 
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Figure 7.16 - Overview of the multi-scale database (1_MTSD). 

The Object File contains a record for every object in the database. It is assumed that 
each object is present at every level, and has the same constituent parts at every level. 

An object record consists of an object identifier, an object description, an integer value 
which acts as a 'real world' classification code and lists of references to its component 
polygon, line and point features. Note that Point objects refer directly to the Point File 

where the coordinates are stored. The Polygon Feature File stores the description of 
each polygon feature present in the database. Each polygon is described by its polygon 
identifier and a list of the identifiers of the line features from which it is made up. The 

Line Feature Files, with one file per database level, stores for each line feature its 
identifier and the list of point identifier /sequence number pairs which make up the line. 

Each file only stores the identifiers/ sequence numbers of vertices which are introduced 

at its level. Therefore, to construct a line feature at a given level, it is necessary to 

access all Line Feature Files from the highest level of occurrence down to the given level. 

There are two quadtree files, a Point Quadtree File and an Object Quadtree File, at 

each level of the database. Each Point Quadtree File is used to provide spatial access 

to all points relevant to its particular level. Each Object Quadtree File provides spatial 

105 



www.manaraa.com

Chapter 7 The Implicit TIN ' 

access to all objects present in the database. 

Explicit triangulations, formed as a result of triangulating the Implicit TIN, are stored 
temporarily in the Triangle File. This file records for each triangle its identifier, the point 
identifiers of its constituent vertices and attribute identifiers associated with the 
triangle. Attribute identifiers are obtained by the triangle taking on the classification 

attributes of any object of which it is a part. 

7.5.2 A Geological Application. 
The Implicit TIN algorithm described in section 7.4.2 has been implemented in C on a 
SUN workstation. It forms part of an experimental ISAM version of the multi-scale 
Implicit TIN database described in section 7.5.1. Figure 7.17 shows the output 
produced when the database was applied to a test data set, using an L shaped query 
region. The test data consists of a terrain surface, made up from 612 points, and a set 
of geological outcrop features. These features, which act as constraining objects, are 
comprised of 13 geological outcrop regions and 7 geological faults. The outcrop regions 
are made up from 20 polygons, while there are a total of 143 line features used to 
define these polygons and the fault lines. The constraining features are described by a 
total of 967 points. Point Quadtree cells and Object Quadtree cells have a maximum of 
5 points and 5 objects, respectively, per cell. 

Two database levels are shown to demonstrate the differing amount of detail at each 
level. The first level (Figure 7.17a) was created with vertical and horizontal error 
tolerances of 10 metres. This resulted in 45 points being retrieved for the given query 
window, 14 for the terrain elevation and 31 for the linear constraints. The second, 
more detailed level (Figure 7.17c) was created with vertical and horizontal error 
tolerances of 5 metres, resulting in a total of 77 points (21 terrain and 56 linear 

constraints) being retrieved. For each level, a complete triangulation of the 
corresponding part of the database is also shown (created using the conventional 
constrained Delaunay triangulation algorithm of De Florian and Puppo [22]). The less 
detailed section (Figure 7.17b) contains 587 points, while the more detailed section 
(Figure 7.17d) contains 891 points. Inspection of the triangles shown on Figure 7.17 

confirms that the Implicit TIN produces the same topology as that of the conventional 
TIN. 
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(a) 

(c) 

The Implicit TIN 

(d) 

Figure 7.17 - Output from I MTSD. (a) and (c) The triangulation produced by the 
Implicit TIN algorithm when applied to two levels of the test database. (b) and (d) The 

triangulations produced using a conventional constrained Delaunay triangulation algorithm. 
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7.6 Performance of the I_MTSD. 
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The major advantage that an Implicit TIN system holds over a conventional, explicitly 
defined TIN system is the saving in storage space made as a result of not recording TIN 

topology. Indeed, in a comparison of different methods for storing digital elevation 
data Kidner [87] has been shown that the Implicit TIN is the most space efficient. 
When a single scale Implicit TIN database, of the type described in section 7.4.1, is 

compared to an equivalent explicit TIN database using triangle adjacency pointers, 
there is an approximate storage saving of 

12N-6B-12 

where there are a total of N points, B of which are boundary points. The explicit 

scheme incurs an additional storage cost proportional to 3N to represent coordinates 
of the points. This additional cost becomes 4N if it is assumed that a unique identifier 
is also stored for each point. It is also necessary to consider the storage requirements 
for the geometric definitions of objects. If the object definitions are stored as lists of 
point identifiers, the approximate upper limit on the storage required approximates to 
1N. Therefore, the storage required by an explicit TIN, in addition to triangulation 
topology pointers, is estimated to be 5N. This estimate can be regarded as a measure of 
the total storage cost for*the implicit scheme as other than constraints, there is no 
triangulation topology. The number of points defining the boundary is usually much less 
than N and thus triangulation topology storage approximates to 12N. Therefore the 

relative size of the implicit and explicit TIN schemes is in the ratio 5/17. 

If the Implicit TIN is considered in the context of a multi-scale database, as has been 
described in section 7.5.1, it follows that its approximate storage saving when 
compared to its explicit equivalent (see Chapters 5 and 6) is equal to 

m 
E12N1-6B; -12. 
1-o 

Here there are (m+1) levels in the database and a total of Ni points in the triangulation 

at level i, B; of which are boundary points. Using the same argument as described in the 
previous paragraph, the storage saving made when comparing any level in the implicit 

system to its equivalent in the explicit system is in the ratio 5/17. It follows that as the 

number of levels increase, the overheads for explicit scheme increase significantly. For 

example, consider a database with five levels, each of which involves a reduction in the 

number of points by two-thirds. In this case, the overhead would amount to about 50% 

of that of the most detailed level, that is, in proportion to 6N. Therefore the overall 
ratio of storage between implicit and explicit databases would be 5/23. 

The usefulness of the Implicit TIN will depend, for many applications, on the ability to 

reconstruct the correct constrained Delaunay triangulation for a given query region 
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within a satisfactory length of time. The maximum time allowed to perform this task 

will relate to the specific needs of the application. The major time penalty introduced 
by the Implicit TIN system is that of having to reconstruct the constrained Delaunay 
triangulation from the main memory data. The reconstruction algorithm currently used 
has a worst case time complexity of O(N2), where N is the number of points to be 

triangulated. This represents an upper bound on time for any incremental Delaunay 

triangulation algorithm (constrained or unconstrained), although some parallel 
algorithms improve on this, with 0(logN) reported by El Gindy [89). 

A series of tests have been carried out which show the I_MTSD achieves satisfactory 
results with regards triangulation reconstruction time. For example, the response time 
for producing the triangulation shown in Figure 7.17c was approximately 21 seconds. It 
is believed that response times are as yet far from optimal and an improved 
implementation, based on the same logical design, is possible. For example, the 
introduction of parallel processing methods to triangulation can be expected to 
improve performance in the future [89,90]. Figures 7.18 and 7.19 give the results of 
comparison tests made between I_MTSD and MTSD 2.0. These* results indicate a 
storage saving of about 75% when employing the implicit approach. The resulting 
increase in query response time is seen to depend greatly on the size of the query region. 
For example, I_MTSD queries involving the full spatial extent of the database incur an 
increase in response time of approximately 30% when compared to the equivalent 
MTSD 2.0 query (Figure 7.18). In the case of the L-shaped query region the percentage 
response time increase when using the I MTSD is not as great, ranging between 0% and 
about 20% (Figure 7.19). 

Method Number 
of levels 

Vertical 
Error (m) 

Lateral 
Error (m) 

Storage used 
(K-bytes) 

Time taken 
retrieve ttria 

ngles angles 
all 

t (s) 
30.0 50 8.0 

MTSD 2.0 3 12.5 1) r, Inc 12.0 
1.0 17.0 

30.0 5.0 11.5 
Implicit TIN 3 12.5 2.5 104 16.0 

Figure 7.18 - Results of comparison tests between I_MTSD and MTSD 2.0. Here, 

queries involve the full spatial extent of the database. 
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Method Number 
of levels 

Vertical 
Error (m) 

Lateral 
Error (m) 

Storage used 
(K-bytes) 

Time taken to retrieve all 
triangles intersecting 

L-shaped query window (s) 

30.0 5.0 6.0 
MTSD 2.0 3 12.5 2.5 395 10.5 

1.0 1.0 16.0 
30. 5.0 6.5 

Implicit TIN 3 12.5 1 2.5 104 10.5 

Figure 7.19 - Results of comparison tests between I MTSD and MTSD 2.0. Here, 

queries involve an L-shaped region. 

7.7 Summary and Conclusions. 
This chapter has introduced a new, and improved, version of the Implicit TIN data 

storage scheme. The most important aspect of this work has been the development of a 

novel constrained Delaunay triangulation algorithm, specifically designed for use in an 
Implicit TIN environment. The Implicit TIN has been shown to be a data storage scheme 
that can be used as a space efficient means of representing topographic surfaces in a 

multi-scale environment. The major benefits of the implicit approach are its storage 

efficiency and the flexibility it gives in allowing for the selection of specific line features, 

and the omission of others, for inclusion as constraints upon the model. Execution of 
the TIN reconstruction algorithm inevitably introduces a time overhead. Whether this 

overhead is acceptable will depend on the specific application. 
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8.1 Introduction. 

A Multi-Scale Geological Model ' 

This chapter gives details of a new data model suited to the efficient multi-scale 
representation of 3-D geological data. This model can be regarded as a natural 

progression of the MTSM described in Chapter 5. Section 8.2 provides a brief 

introduction to 3-D GIS, often referred to as Geoscientific Information Systems (GSIS). 

In particular, it outlines the 3-D GIS project currently being carried out by the British 
Geological Survey (BGS), and gives a review of the general requirements of a GSIS. The 

spatial representation of 3-D data is discussed in Section 8.3. The subject is looked at 
firstly from an object representation point of view, with attention being given to the 
boundary representation and octree methods. Various techniques for providing efficient 
spatial access to collections of 3-D objects are then reviewed. Section 8.4, building on 
the design of the MTSM, describes a multi-scale 3-D data model. The model, which 
represents both the ground surface and geological subsurface horizons, is based on a 

series of constrained Delaunay pyramids. A conclusion and summary is given in 
Section 8.5. 

8.2 An Introduction to Geoscientific Information Systems. 
Recent years have seen the accumulation of large quantities of geological and 
geophysical information. This information comes in the form of raw data, such as well 
logs, seismic surveys, and gravity and magnetic studies, and interpreted data, such as 
contours, cross sections, grids of horizons and outcrop maps [91,92,93]. Large 

geological institutions, such as BGS, are currently converting this information into 
digital form. The availability of such digital data has created the possibility for the 
development of a 3-D GIS. Central to this system is a 3-D geological model, based on 
the interpretation of various data sources. It is hoped that the equivalent of currently 

existing published maps will in future be 'derived as projections of the model' [94]. 

8.2.1 The BGS Project. 

In 1990 BGS commenced a research programme under the title 'Three-dimensional 
Integrated Geoscience Mapping'. The main objective of the programme was 'to develop 

the concept of a unified, 3-D representation, or map, of the geology based on surface 
mapping and borehole information, and constrained by joint modelling of multiple 

geophysical datasets' [95]. The 3-D geological map would be designed by a geologist 
on a graphics workstation, starting from a digital terrain model, field data and 

available borehole information. Traditional maps, cross sections and 3-D views (from 

various angles) could then be produced as an output of the 3-D map. From the outset 

of the project it was realised that often there is no direct geological data available. In 

such instances, geophysical methods, such as seismic reflections and potential field 

surveys, provide the only evidence of subsurface structure. However, a problem exists 
in that each geophysical technique pertains to a particular physical property (for 
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example, density or velocity), and when compared will often yield contradictory 
models of subsurface geology. With this in mind, the BGS project is also concerned with 
the design of software which will enable users to correlate and interpret all available 
data sets in terms of a single, unified 3-D model. 

8.2.2 Basic Requirements of a GSIS. 
The basic functions of a GSIS (see [96,97]) are little different from those in a 2-D GIS, 

even though there is greater complexity involved in the design and implementation of 
the 3-D system. For example, such a system has to provide a process for creating a 3-D 

model from available data; have the ability to efficiently store and access the 
information contained within the model; include means by which stored information 

can be updated; provide functions for performing analysis of the model; and include 

procedures for displaying the model and results of analysis (Figure 8.1). 

MODEL 
CREATION 
PROCESS 

Geological/Geophysical 
3-D 

GEOLOGICAL Oa- UPDATE 
Data 

k,,. 

" MODEL 

DISPLAY 

ANALYSIS 

Figure 8.1 - The basic components of a 3-D GIS. 

Of these five basic requirements, this thesis is primarily concerned with the first two, 
that is, model creation and model storage. Model update has been given some thought 
in Section 9.3, but not to any great extent. Also, it is felt that the development of new 
techniques for the display and analysis of the 3-D model provides scope for 

considerable research effort in itself (see, for example, various papers in [92]). 
However, 'the usefulness of the model will come from the ease with which it can be 

developed, modified and analysed' [93]. Therefore, since the 3-D model with which 
this work is concerned must eventually form part of an overall system, the implication 

is that for the purpose of update, display and analysis, any such model will have to be 

dynamic, provide efficient access to information and allow for high levels of detail to 
be included when describing objects. 

An additional requirement of the data model being detailed in this chapter will be to 
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allow for the creation, storage, display and analysis of data at different levels of 
detail. This capability is 'clearly desirable, both for the purpose of mapping at a range 

of scales and for search and overlay procedures' [91]. 

For the purposes of this section, it is important to consider two fundamental 

differences that exist between a conventional GIS and its geological equivalent, a GSIS. 

The first difference lies in the dimensionality of the data being stored. GIS are primarily 
two-dimensional and are interested in the main with x and y coordinates. When the 

third dimension is involved it is usually only included as an attribute of the 2-D data. 

Consequently, the databases, data structures, analysis functions and display/output 

facilities provided by GIS are suited only to 2-D data. For example, even a GIS facility 

which at first glance may appear to offer three-dimensional capabilities, such as a 
Delaunay TIN model, is primarily concerned with the x and y coordinates of a point, 
and can only deal with surfaces which are single-valued with respect to the xy-plane. 
Conversely, a GSIS needs to cater for three-dimensional data. The world of the 

geologist is a 3-D world, where the z coordinate is as important as either the x or y 

coordinate, and as such the geologist's data is 3-D. Therefore, the databases, data 

structures, model creation and analysis operations and display/output facilities 

provided by a GSIS need to be able to deal with 3-D data. 

A second difference lies in the fact that when dealing with subsurface geological data, 
it is very often the case that only incomplete, and sometimes conflicting, information is 

available [97,98]. This situation is mainly due to the difficulties, and associated high 
financial costs, in collecting subsurface information. The problem of limited subsurface 
data is compounded by the extremely complex nature of certain subsurface structures. 
This incomplete subsurface (and hence not visible) data can be contrasted with the 
highly visible, and hence relatively easy to sample, nature of 2-D geographic data. 

As has been stated, geological information is made available from a number of sources. 
In order to create the best model it may be argued that a sensible approach to model 
creation is to consider all available data during the creation process. Dabek et al [99] 

add weight to this argument by recognising that 'the correlation and joint 3-D modelling 

of all available datasets is necessary to achieve the best possible interpretation of 
geological structure in any area'. This thinking appears to be the motivation behind the 

approach adopted by Unger et al [100] when a model of a portion of the Earth's crust 
is formed by bringing together information from six different data sets, namely, surface 

outcrop maps, migrated seismic reflection profiles, seismic refraction data, gravity 
models and magnetic models. 

8.3 The Spatial Modelling of 3-D Objects. 
Before proceeding, it is necessary at this stage to formally define the types of object 
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which are to be facilitated by the 3-D data model. It seems reasonable to assume that 
to be of greatest advantage to potential users (that is, geologists), the GSIS must be able 
to include any object type that is of interest to the user. Rhind [97] divides these 

objects into two categories, namely, those which are designed and those which are 

revealed. Designed objects include objects such as toxic waste disposal sites, quarries 
and buildings. In these cases the shape of the object is the product of workmanship 
based upon an original, man-made design. In contrast, revealed objects include all 
objects which have not been designed, their shape therefore having to be deduced from 

secondary evidence. Raper [92] has divided this group of object into two sub-groups. 
The first consists of all objects which can be regarded as sampling-limited. Discrete 

spatial entities, such as a perched aquifer, which may be progressively better defined 
by increased sampling, are included in this sub-group. The second sub-group consists 
of objects which can be regarded as definition-limited, that is, those which are 
identified by specification of particular threshold values of aspatial attributes. For 

example, the shape of an object defining a stratigraphic unit, as defined by the 
frequency of a particular micro-fossil, will change as the frequency threshold changes. 

8.3.1 Modelling 3-D Objects. 
Requicha [101] in a review of solid modelling techniques identifies six schemes which 
produce unambiguous definitions of solid objects. They are primitive instancing, 
constructive solid geometry, sweep representations, spatial occupancy enumeration, 
cell decomposition and boundary representations. Of these, only the latter three 
appear to be relevant to geological modelling [91]. Raper [92] gives an overview of the 
two approaches to a 'full 3-D spatial structuring of geo-objects'. These can be regarded 
as the 3-D equivalents of tessellated (raster) and vector structures. The tessellation 

solutions mentioned are the simple voxel models [102], the octree [96] and the polytree 
[103]. Vector data structure schemes included are those which use topological relations 
to define 3-D boundary representations for indexing geometric data (see 'simplicial 

complexes' of Carlson [104], 'structured vector fields' of Burns [105]); the 3-D 
definition of iso-surfaces by the 3-D interpolation between points (see IVM system 
[106]); and the spatial clustering of vectors defining the geological objects by a 
geometrical attribute in a geoscience database (see "Geokernal" [107]). Jones [91] 

presents a review of the conventional digital methods of representing geological 
structures. They are regular grids, surface patches, triangulations and block models. 
Also included in Jones [91] is detail of two other, at the time more novel, approaches, 
namely the octree and polytree. Two methods, suggested by several authors in the 
literature [91,96,108], seem to be of particular interest. They are the octree, an 

adaption of the spatial occupancy enumeration and cell decomposition methods, and 
boundary representations, where a solid is defined by the geometry of its bounding 

surface. 
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A boundary representation represents a solid by dividing its boundary into a finite 

number of faces or patches. Each face is explicitly defined by its bounding edges which 
in turn are defined by their vertices. Free-form surfaces can be modelled by using spline 
functions to fit patches through the vertices of each polygonal face [101,91,961. A 

boundary representation example is given in Figure 8.2. 

This scheme is widely used in computer graphics due to its ability to cater for effective 
visualisation of complex objects (shading, hidden line and surface removal, light source 
simulation). Boundary representations can represent objects of any shape, but the 

validity of these objects is difficult to verify. With geological applications in mind, 
another problem presented is the difficulty in searching a given region in 3-D space. The 
technique is suitable for computing volumetric properties but Boolean operations are 
complex (quadratic complexity compared to linear complexity of the octree 11091). 
However, the exact geometry of the model does provide for accurate analysis. A TIN 

can be regarded as an example of a boundary representation scheme and seems a 
convenient technique for representing subsurface boundaries at multiple scale. 
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Figure 8.2 -A boundary representation for a rectangular pyramid. (From Requiclia 
1101]). 
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8.3.1.2 The Octree. 
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The octree data structure can be regarded as the 3-D equivalent of the quadtree. It is 
built by the recursive subdivision of the object space (a cubic volume) into eight equally 

sized sub-cubes, or octants. Subdivision stops when a criterion of uniformity is met 
(Figure 8.3). The octree is stored explicitly as a tree data structure (Figure 8.4) where 

every non-terminal node, or GREY cell (except for those of minimal size), will have a 
pointer to each of its eight child nodes. An object can be reconstructed by traversing the 

tree and assembling all terminal nodes in the process. 

Octrees have several distinct advantages over other solid modelling techniques (see 
[103], [91], [96]). Firstly, they can represent any arbitrarily shaped objects (convex, 

concave, interior holes) to the precision of the smallest cell. Secondly, Boolean 

operations are less complex than those for boundary representations. A third 

advantage is that geometrical properties, such as surface area, volume, centre of mass 
and interference can be calculated at different levels of precision. Also, they provide 
the basis for spatial sorting operations thus increasing search efficiency, they ensure 
that space is uniquely defined which is desirable since space cannot be occupied by 

two or more objects, and they can be used to represent the interior of non-homogeneous 
solids. 

Figure 8.3 - The object-space recursively subdivided into octants to form an octree. 

7 

Figure 8.4 - The explicit tree corresponding to Figure 8.3. 
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However, octrees do incur some disadvantages (again see [103], [91], [96]). Firstly, the 
boundary surface of the object being modelled is represented by a set of square facets 
between empty and full cells. Therefore octrees provide only an approximation of the 
original surface, the accuracy of which is dependent on the maximum number of cells 
that can be stored. A second disadvantage is due to the storage of eight pointers for 

every non-terminal node which introduces considerable storage overheads. 

The linear octree [110] is a data structure which represents all the basic properties of a 
regular octree, but with considerable savings in space. It achieves this by only storing 
terminal nodes, also referred to as leaf nodes. Each leaf node is assigned an unique 
storage address which is directly related to the nodes position in the octree. The 

address for each leaf node is generated using numbering systems known as tesseral 
addresses [37]. Bak and Mill [96], Gargantini [111], Jones [91] and Abel and Smith [72] 
give examples of such systems. 

The regular and linear octrees described thus far are deficient in the fact that they 
represent only an approximation of the original object. However, there is no reason why 
nodes in such structures cannot store precise definitions of vertices, edges and faces. 
Similar assertions regarding quadtrees resulted in structures such as the PM trees of 
Samet and Webber [34]. The polytree [103] and the exact octree [109,112], adaptions 
of the normal octree types, store exact representations of the object being modelled. 

8.3.2 3-D Spatial Indexing Techniques. 

As is the case with 2-D GIS, a GSIS must be expected to provide spatially specific 
access to data which may be areally extensive. For example, it may be that in the future 

an establishment such as BGS will possess a single, seamless 3-D geological database 
covering the whole of the UK. It is reasonable to assume that certain queries delivered 
to this database will only require a small, and spatially specific, portion of the 
information held by the database. Therefore, it will be necessary to provide spatial 
indexing of some sort on the 3-D database. Thus individual geological objects, which 
have been defined using methods of the sort described in the Section 8.3.1, will be 

retrieved on the basis of their location in xyz-space. This section will deal briefly with 
four possible spatial indexing techniques, each of which can be regarded as being the 3- 
D equivalent of a corresponding 2-D scheme previously described (see Chapter 3). 

8.3.2.1 A Fixed 3-D Grid. 

This method can be thought of as the 3-D equivalent of the fixed grid (Section 3.3.1) 

and is based on the idea of dividing xyz-space into equal-sized cubes. Thus a spatially 
extensive volume of data is divided into smaller, equal-sized sub-regions. One possible 
way of implementing this scheme would be for each cube to maintain a reference to 
each object which intersected that cube. A second possibility would be for each cell to 
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correspond to an area of storage (or memory) in which the intersecting objects are 
themselves stored. 

8.3.2.2 The Octree. 

The octree data structure has already been described in the context of its usefulness as 

a means of storing individual solid objects. For the purposes of a large GSIS database, 

a further application of the octree would be to use it purely as a spatial indexing 

scheme, with each octant keeping a record of any object which intersected it. Thus a 
'universal' octree would provide fast spatially specific access to geological objects. 
Note that these objects could themselves be defined using the octree approach 
described in Section 8.3.1.2. This scheme can be regarded as the 3-D equivalent of the 

quadtree scheme described in Section 7.4.1. 

8.3.2.3 The R-tree. 

The description of the R-tree given in Chapter 3 restricted itself to a 2-D 
implementation. However, it should be noted that the R-tree is in fact a k-dimensional 

spatial indexing scheme and can therefore be used to index 3-D data. In this case each 
leaf node contains one or more record entries of the form 

(J, object id) 

such that J is the smallest 3-D rectangle that spatially contains the data object pointed 
to by the identifier object--id. Non-leaf nodes contain entries of the form 

U, child iah 

where child id points to a node in the next lower level of the R-tree and J is the 
bounding 3-D rectangle of all-objects pointed to by the lower node entries. Initialising 

and accessing the 3-D implementation of an R-tree is analogous to that of a 2-D 
implementation, and as such will not be discussed here. 

8.3.2.4 The Grid File. 
As was the case with the R-tree, the grid file was originally designed as a k- 
dimensional spatial access data structure. Therefore, with regards a 3-D application, 
the grid file can be described as being based on the principle of dividing space into 3-D 

rectangles, which are not necessarily equal sized. The Grid Directory again consists of 
two parts, the first a dynamic 3-D (not 2-D) array containing one entry per 3-D grid 
block. The second part of the Grid Directory now consists of three (not two) linear 

scales, which define the size of 3-D cell in the x, y and z directions. Thus 3-D spatial 

searches are supported as a result of an initial search of the linear scales. 

119 



www.manaraa.com

Chapter 8 

8.4 A Multi-Scale 3-D Model. 

A Multi-Scale Geological Model ' 

It is the intention here to develop the 2-D MTSM design into a 3-D multi-scale data 

model. This is seen as a natural development, since the MTSD appears to have certain 
characteristics which lend themselves to the modelling of 3-D geological structures. For 

example, the constrained Delaunay pyramid (CDP) seems to be a technique well suited 
to the multi-scale representation of subsurface horizons. 

8.4.1 A Review of the 2-D Data Model 

The MTSM provides efficient multi-scale storage of, and access to, what is essentially 
2-D information. This information comprises of ground surface data and topographic 

object data (made up from polygons, lines and points) representing features which lie 

on the ground surface. These data are combined and processed to form a multi-scale 
data model. Efficient access to this model is provided by introducing spatial access 
data structures (in the form of fixed grids) to each level of the model. During model 
construction, levels of scale significance are assigned to individual data entities by 

applying a suitable generalisation algorithm (that is, either the Douglas-Peucker 

algorithm or De Floriani's error-directed point insertion algorithm). 

8.4.2 Extending the 2-D Design into 3-D. 
When designing the data structure for the multi-scale 3-D data model it is essential to 
have a clear understanding of what is being modelled. An ideal data model should be 

capable of including both revealed (sample-limited and definition-limited) and 
designed objects. Revealed sample-limited objects and designed objects are similar in 

that they are each, at all times, defined by a definite, discernible boundary. Definition- 
limited objects differ in that they can be regarded as being secondary objects, in which 

a definite boundary only comes into existence as a result of a particular query (and the 

processes resulting from the query) being applied to what can be regarded, in this 
instance, as primary data. It therefore follows that for the purposes of data model 
design, geological objects fall into one of two categories, which shall be termed hard- 

object and soft-object. Hard-objects correspond to revealed sample-limited and 
designed objects, and can be best catered for using a boundary representation 

approach. A soft-object can be thought of as a collection of related information from 

which definition-limited objects are derived. Soft-objects, in which data is 

characterised by the gradual variation of a particular property, can be represented 
using the octree method. 

With the shift from 2-D to 3-D it is inevitable that more complex modelling routines 

will be required. This is due, in the most part, to the greater complexity involved when 
dealing with 3-D data, particularly of the geological kind. A particular problem is the 
difficulty in modelling multi-valued surfaces. Several solutions to the multi-valued 
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surface problem have been proposed [113,114,115]. However, these solutions are 
limited in that they either require dense data sampling or the provision of an initial, 

albeit coarse, input of surface topology. A further cause of greater complexity is the 
disparate nature of the many sources of geological information. Therefore the model 

must provide means by which all data sources can be integrated and processed to 

produce a correct interpretation of the geology it is seeking to represent. 

The means by which geological information is generalised, and subsequently 

represented, also needs to be addressed. Generalisation of geological information can 
be divided into two categories, which will be termed micro-generalisation and macro- 

generalisation. Micro-generalisation concerns itself with individual objects and how 

they may be represented at various levels of generalisation. This could include, for 

example, the generalisation of a hard-object, defined using a boundary representation 
made up from triangles, by applying an adaption of the surface generalisation 
technique adopted by the MTSD systems. A second aspect of geological generalisation 
concerns itself with how collections of objects relate to each other at various scales. 
This type of generalisation, referred to here as macro-generalisation, is the process by 

which individual objects are themselves eliminated from a particular level of 

generalisation, or undergo some special type of merging with surrounding objects. Such 

generalisation is usually associated with a specifically adopted geological convention. 
For example, a series of horizons representing a sandstone formation at source-scale 
may be replaced by a single horizon at a smaller scale representation. Rules governing 
such behaviour are usually specific to particular geological agencies, and even within 
individual agencies conventions may differ from model to model (data site to data 

site). It is necessary to include in the multi-scale model provision for both micro and 
macro generalisation. 

Spatial indexing can be provided by applying one of the methods described in Section 

8.3.2. It is suggested that in keeping with the design of the MTSM that either the 3-D 
fixed grid or octree method be adopted. A comparison of the relative advantages and 
disadvantages of these two approaches would suggest that the octree method would 
offer the better overall performance. It is also necessary to decide on which information 

is to be spatially referenced. It is perhaps obvious that individual objects need to be 

indexed in this way, but less obvious perhaps is the way in which 'object parts' might 
benefit from such indexing. For example, an object representing a subsurface horizon 

might be made up from a collection of triangulation patches, which in turn are made up 
from a number of triangles. In this instance it may prove beneficial to spatially index 

surface patches, in addition to just objects, as it could be that the subsurface horizon 

itself is spatially extensive. Therefore it seems that a 3-D model in which individual 

objects may themselves be spatially extensive would benefit from an additional object 

part spatial index. A query would now firstly involve identifying all relevant objects, 
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then secondly, retrieving only relevant parts of these objects. Spatial indexing would 

also need to be separated into levels, as in the MTSM, since it is quite possible that 

different objects and object parts will be present at different levels. 

8.4.3 A Prototype Multi-Scale 3-D Model. 
A prototype multi-scale 3-D geological data model (MGM) is now presented, 
implementation details of which are given in Chapter 9. The prototype model, 
illustrated in Figure 8.5, provides efficient multi-scale storage of, and access to, the 

ground surface and subsurface horizons. Before the model is discussed in detail, it is 

first of all necessary to discuss the type of data that is to be modelled. 

8.4.3.1 A Description of Data to be Modelled. 

Three types of data have been made available from BGS, namely, ground surface data, 

outcrop object data and borehole (well) log data. The ground surface data is in the 
form of a list of irregularly distributed 3-D coordinates. The outcrop data consists of a 
list of outcrop objects, a list of polygon features, a list of line features and a list of 

point features. Each object is made up from a list of constituent parts, an object type 
identifier, an object description and a unique object identifier. Outcrop objects are of 
two types, that is, either region or fault. Region outcrop objects consist of a list of 
constituent polygon identifiers, fault outcrop objects consist of a list of constituent line 

identifiers. Polygon features are made up from a polygon identifier and a list of 
constituent line identifiers. A line feature consists of an unique identifier, a list of its 

constituent points and two integer values indicating which two region outcrop objects 
lie to its left and right. Each point feature is made up from an x and y coordinate, plus 
a unique identifier. The borehole data is made up from a number of borehole records. 
Each borehole record is made up of a header record, which stores the x, y and z 
location of the borehole at the ground surface, and a series of subsurface horizon depth 

measurements. Also included is a file containing a record of the order in which the 

subsurface horizons appear in the geological column. Specific subsurface horizons 
found in the data include the Lincolnshire Limestone (LLL) Formation, the Grantham 

(GRF) Formation and the Northamptonshire Sands (NS) Formation. In this thesis, when 
a particular horizon is referred to the convention adopted is that the horizon represents 
the base of the formation. For example, the LLL horizon refers to the base of the 
Lincolnshire Limestone Formation. 
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Figure 8.5 -A single level in the multi-scale geological model. 

8.4.3.2 Model Description. 

The prototype data model is capable of representing the ground surface and subsurface 
horizons at multiple scales. The model is divided into levels, each corresponding to a 
different resolution. Each level in the model will include details of the point data 
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(ground surface, subsurface and outcrop object) which becomes relevant at that level, a 
series of triangulations, each corresponding to a particular surface (that it, the ground 
surface or a subsurface horizon), the outcrop objects relating to the level and 
constituent polygon and line features. In the case of line features these are stored in a 
line generalisation tree format. Subsurface triangulations are made up from one or more 
triangulation patches. This particular structure is included in order to facilitate the 
data segmentation model construction method (Section 9.5.1.1), which is based on the 
concept of a multi-valued triangulated surface being made up from a number of single- 
valued triangulated patches. The structure of each ground surface triangulation and 
each set of subsurface triangulation patches follows closely to the triangulation design 
implemented in the 2-D system, where data duplication is minimised by introducing 
internal, boundary and external triangle types. Any known geological feature, such as 
an outcrop region or the intersection of a fault, is included in the model by embedding 
the isolated points, lines or polygons which represent that feature within the 
appropriate triangulation. Note that the prototype implementation, to be discussed in 
Chapter 9, only deals with single-valued surfaces. As such a triangulated surface is 

only ever made up from a single patch. 

It is pointed out that the MGM differs from the full multi-scale 3-D model design 
specification (outlined in Section 8.4.3) in two main areas. Firstly, the prototype model 
only deals with hard-objects, that is, designed objects or revealed sample-limited 
objects. These hard-objects are themselves restricted to surface triangulation objects 
and outcrop objects (consisting of collections of polygon, line and point features). No 
attempt is made to cater for soft-objects. These limitations do not severely effect this 
work's contribution to the BGS project since all data sets made available to this project 
can be adequately catered for using hard-objects of the types described. The second 
difference between a full model design and the MGM is that a less complicated 2-D 
spatial indexing approach is adopted, in the form of a series of quadtrees. At each 
level of the model there is a ground surface triangle quadtree for referencing triangles in 
the ground surface triangulation, an outcrop object quadtree referencing outcrop 
objects and a triangle-referencing quadtree for each of the subsurface triangulation 
patches. In order to process a 3-D spatial query, the query must be broken down into a 
number of 2-D queries. This method appears adequate for use with the BGS data. 

8.4.4 Model Creation. 
Having described the prototype multi-scale 3-D model, it is now possible to give 
details as to how the model can be created. It should be noted that the methods 
described here assume that all surfaces are single-valued with regard to the xy-plane. 
The creation process is firstly described, for the sake of simplicity, in the context of a 
single-scale environment. A method for applying this process to the creation of a multi- 
scale model is then described. There are three main stages in the single-scale model 

124 



www.manaraa.com

Chapter 8 A Multi-Scale Geological Model ' 

creation process. These are the triangulation of the ground surface data, triangulation 

of the subsurface horizon data and the inclusion of fault data. 

8.4.4.1 Ground Surface Triangulation. 

The first stage in the model creation process is the production of a ground surface 

triangulation. The surface is defined by the set of irregularly distributed terrain data 

and the collection of geological outcrop objects (outcrop regions and faults), which act 

as constraints upon the surface. The surface triangulation is created by applying a 

constrained Delaunay triangulation algorithm to the data. Initially, all terrain points 

and points forming part of geological outcrop objects are grouped together and 
Delaunay triangulated. This is followed by the process of inserting the line features, 

from which the geological outcrop objects are made, into the triangulation as a series of 

constraining line segments. 

8.4.4.2 Triangulation of the Subsurface. 
The second stage of model creation is that of subsurface triangulation. Before 

describing this process it is necessary to clarify what subsurface information is 

available. The data being modelled in the MGM includes two sources of subsurface 
information. The first, and perhaps most obvious source, is that obtained from the 
borehole logs. Each log consists of a header record, which stores the x, y and z location 

of the borehole at the ground surface, and a series of subsurface horizon depth 

measurements. These measurements record the vertical depth of each subsurface 
horizon relative to the ground surface. By combining the depth measurements with the 

ground surface level (recorded in the header record) it is possible to produce a series of 
3-D points, each of which lies on a particular subsurface horizon. For the purposes of 
triangulation it is necessary to collate individual borehole information (that is, each 3-D 

point) on the basis of on which subsurface horizon it lies. This is achieved by 

collectively processing the borehole logs in such a way as to group together, in a single 
file, all 3-D points which relate to a particular horizon. Therefore each subsurface 
horizon will have associated with it a subsurface elevation file which contains a 

collection of irregularly distributed 3-D coordinates which describe that horizon. 
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Figure 8.6 - Assigning outcrop boundaries to their correct subsurface horizon. (a) Line 

1 assigned to Lincolnshire Limestone Formation, line 2 to Grantham Formation. (b) Line 1 is 
identified as a fault. 

A second source of subsurface horizon information is provided by the geological 

outcrop boundaries. Each line feature from which a boundary is made-up may possibly 
be associated with a particular subsurface in the sense that it describes a series of' 

points at which that subsurface outcrops at the ground surface. Hence the points 
defining the line can be regarded as forming part of the subsurface in question. Pairing 

an outcrop boundary to its correct subsurface is achieved as follows. Each line feature 
has associated with it two pointers, indicating the outcrop objects lying adjacent to it 

(that is, to its left and right). By examining these pointers and associated objects it is 

possible to derive the subsurface to which the line feature belongs. For example, if the 

two regions adjacent to the line feature are of different types, say LLL and GRF, then 

the line is assigned to the subsurface which appears higher in the geological sequence, in 

this case the LLL subsurface (Figure 8.6a). Note that a record of the geological sequence 
associated with the data set being modelled forms part of the source data set. 
Alternatively, if the line feature in question points to adjacent regions of the same type, 
LLL and LLL for example, then the explanation is that the line feature represents a 
fault, or part of a fault, and therefore is not assigned to a subsurface horizon (Figure 

8.6b). The inclusion of faults within the model is dealt with at a later stage. 

It is now possible to proceed with the triangulation of a particular subsurface horizon. 

The process, follows very closely to that of triangulating the ground surface data, but 

with an additional, final stage. Initially all points from the subsurface elevation file of 

the horizon to be triangulated are grouped together with the points defining the line 

features assigned to that subsurface. A Delaunay triangulation algorithm is then 
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applied to these points. Next, the line features are added into the triangulation as a 
series of constraints, producing a constrained Delaunay triangulation. It should be 

noted that these edges will each have a matching edge in the ground surface 
triangulation. The Delaunay triangulation algorithm assumes that the surface being 

triangulated is a 2-D plenum, that is, there are no internal holes or gaps within the 
triangulation. This is always the case when considering the ground surface, but not 

when considering a subsurface horizon. Therefore, it is sometimes the case that 

unwanted triangles are produced (Figure 8.7). The final stage is to delete these 

unwanted triangles from the triangulation. The unwanted triangles occur in areas where 
in reality the subsurface does not exist. 

GRF 

(a) 

Unwanted triangles 

GRF 

(b) 

Figure 8.7 - Unwanted triangles created during triangulation of the subsurface. (a) A 

cross section of the correct geology. (b) The corresponding model cross-section where the LLL 
horizon has unwanted triangles. 

In order to delete the unwanted triangles it is first of all necessary to identify them. 
When dealing with single-valued surfaces, as is the case here, this can be achieved in 

one of two ways. The first involves comparing each subsurface triangle with the ground 
surface triangulation. If a subsurface triangle is found to lie above the ground surface 
then a contradiction to what can be regarded as possible reality has occurred (that it, 

the subsurface cannot lie above the ground surface). Therefore, such a triangle can be 

marked as unwanted. The second method, which can only be applied when the 

subsurface is known to be single-valued, adopts the approach of comparing each 
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subsurface triangle with the geological outcrop regions obtained from the outcrop map. 
If the triangle lies in an outcrop region which is lower in the geological sequence than the 

subsurface the triangle belongs to, then it follows that the subsurface in question is not 
present at that location, and hence the triangle can be marked as unwanted (Figure 

8.7). This second approach is the one adopted in the implementation described in 
Chapter 9. When all triangles have been processed, and marked accordingly, all those 

which are unwanted can be deleted from the triangulation. The process of subsurface 
triangulation is repeated for each of the horizons that are to be included in the model. 

A further possibility for the prototype model, although not implemented in Chapter 9, 

is the formation of enclosed volumes by joining adjacent surfaces along common 
borders. Surfaces with no common border can be catered for by introducing dummy 

surfaces to connect upper and lower boundaries. This can be achieved using methods 
such as the shortest span technique of Christiansen and Sederberg (1161. Complex 

geological objects could also be represented as collections of relationships between 

constituent volumes and surfaces. 

8.4.4.3 Including Faults in the Model. 
Fault lines, obtained from the outcrop map, are already present as constraining objects 

within the ground surface triangulation. In order to provide a true representation of 
subsurface horizons it is also necessary, where appropriate, to include projections of 
these fault lines in the subsurface triangulations. The situation is that a fault has been 

identified, and recorded, on the ground surface. This fiult may be assumed to affect 

certain of the subsurface horizons, the way in which it does depending on its depth, 

angle of dip and throw (Figure 8.8). 

I)epth 

Figure 8.8 - The dip, throw and depth of a fault. 
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Consider a single fault line Fg in the ground surface triangulation Tg, and how it may 

affect a single subsurface horizon T5. Fg is defined by a series of m 3-D points (g1, g21...., 

&). The first stage in the fault modelling process is to ascertain if the fault does 

actually affect the subsurface horizon in question. 

Ground 
Surface 

Subsur, 

(a) (b) 

Figure 8.9 - Projecting a fault onto a subsurface. (a) The ground surface fault is projected 
along path parallel to its angle of dip, generating points on subsurface. (b) The new points 

and fault line are added to subsurface triangulation. 

This is achieved by comparing the estimated depth df of the fault with the depth d,, of 
the horizon. If di >= dh then the fault can be regarded as being present in T8. The 

second step, when necessary, is to generate a subsurface fault line Fs, consisting of m 
points (sl, s2,....., sm) which lies on T8. This is achieved by projecting each point gi of Fg 

along a path parallel to the angle of dip of Fg, recording the point s; where the path of 

projection intersects Ts, thus forming the fault line Fa (Figure 8.9). 

Also, when dealing with a subsurface fault line, it is necessary to consider the throw of 
the fault. This structure can be modelled by the generation of a second, additional fault 

line Ft consisting of points (t1, t2 ...... t,,, ). Here it follows that the first and last points, tl 

and tm, are equal to sl and sm, respectively. The intervening points, (t2, t31...., t. 
-I) can 

be generated by offsetting, by an appropriate amount, the coordinates of each of the 

corresponding points (s2, s3,...., sm-1) in the direction of fault dip (Figure 8.10). The size 

of each point's offset will be in relation to that point's distance from the centre of the 
fault line. 
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Figure 8.10 - Modelling the throw of a fault. (a) Triangulation before throw is inserted. 
(b) Triangulation after throw is inserted. 

For this technique to be of use, the assumption is made that the depth, angle of dip and 
throw information pertaining to each fault is known. In the case of the BGS Grantham 
data these values have been estimated (following consultation with BGS geologists). 
However in some cases, particularly when it is the computer doing the modelling in the 
first instance (as opposed to a geologist using a computer to model his/her model), 
such information will not be available. Chapter 10 includes details of recent research 
which may be of help in automatically generating fault information data. 

When all subsurface horizons have had the appropriate fault lines inserted, it is 

possible to further enhance the model by generating fault surfaces. This is achieved by 

triangulating between corresponding fault lines in adjacent surfaces, thus forming a set 
of complete fault representations, in the form of fault surface triangulations. This 

process has not yet been implemented in the system described in the next chapter. 

8.4.4.4 Creating the Multi-Scale Model. 

Each of the previously described 3-D model creation stages can be adapted to cater for 

the creation of a multi-scale 3-D model. The process of creating the model follows 

closely to that of building the MTSM, as described in Section 5.3. Consider a set of 

points Sg describing the ground surface, a set of objects 0 (and constituent polygon, 
line and point features) which act as constraints on the ground surface, and a series of 

sets of points, SB,, Ss2....., Ss,, each describing a particular subsurface horizon. Now 

consider the steps involved in creating ak level multi-scale 3-D model from this data. 
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Each level i has two error tolerances, Evi and EL, associated with it, relating to vertical 
error and lateral error respectively. 

The first stage is to simplify the outcrop objects 0 into k levels of generalisation. The 

generalisation is achieved, as in the MTSM, by applying the Douglas-Peucker algorithm, 
with error tolerances of Ell, E121.... Elk at progressive levels, to each of the line features 

which make up the individual outcrop objects. Data duplication is minimised by 

storing each of the resulting generalised line features in a line generalisation tree. The 

next stage is to construct a k-level CDP, referred to here as CDPg, from the points Sg 

and generalised objects O. This is achieved by applying the adapted CDP algorithm, 
described in Section 5.3, with a combination of the error tolerances Ev; and E. governing 
which points are included at a particular level i. CDPg will serve as the multi-scale 
representation of the ground surface. The third stage in the creation of the 3-D multi- 
scale model is to create a series of CDPs, CDP,,, CDPs2,...., CDPs,,, corresponding to 
each of the n subsurface horizons. For a particular subsurface i, this involves, firstly, 
identifying which of the outcrop objects Oj of 0 are associated with that subsurface. 
This is achieved as described in Section 8.5.3.2. The adapted CDP algorithm is then 
applied to Si and O;, thus creating CDPS;. Note that if a particular horizon was made 
up from more than one triangulation patch there would have to be a CDP for each 
patch. In its application to subsurfaces, a minor alteration in how the CDP algorithm is 

applied is in the insistence that when objects are included in a subsurface pyramid, 
CDP51, then the level at which their constituent points appear in the pyramid is 

governed by the level at which each point appears in CDPg. This ensures that there is 
consistency between constraining edges within CDP, and CDPB;. Unwanted triangles 
are deleted as described in Section 8.5.3.2. The final stage in the creation of the multi- 
scale 3-D model is the extrapolation of ground surface fault lines into the subsurface. 
This is achieved by applying the method described in 8.5.3.3 to each of the model's 
generalisation levels. 

8.5 Summary and Conclusions. 

This chapter has been concerned with the design of a multi-scale 3-D data model 
suited to geological applications. It has given a brief introduction to the subject of GSIS, 

particularly in the context of the 3-D Integrated Geoscience Mapping project currently 
being carried out by BGS. A review of the conventional methods used for representing 
and spatially referencing 3-D objects have been described, with the conclusion being 
that the boundary representation and octree techniques are well suited to representing 
geological structures. The main body of work in this chapter is contained in Section 8.4, 

which concerns itself with extending the MTSM (Chapter 5) into 3-D. Section 8.4.2 

provides description of a proposed 'ideal' multi-scale 3-D geological data model, 
which includes two new geological data types, namely, hard-objects and soft-objects. 
Section 8.4.3 describes in detail a prototype multi-scale 3-D geological model (MGM) 
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and associated model construction algorithms. The MGM provides multi-scale storage 
of, and access to, the ground surface and subsurface horizons. This model, and 
associated construction algorithms, are believed to offer a novel, and very useful, 
means by which subsurface geology can be represented. The MGM has been used as the 
basis for a prototype multi-scale GSIS, details of which are given in Chapter 9. 
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9.1 Introduction. 

A Multi-Scale Geological Database ' 

Chapter 8 included a description of a prototype data model (MGM) suited to the 
efficient multi-scale storage of 3-D geological data. The methods required to construct 
this model from source data were also discussed. The current chapter provides details 

of an ISAM database implementation of the MGM. Section 9.2 gives a description of 
the database and outlines the stages involved during database creation. Database 

retrieval and update is discussed in Section 9.3, the type and format of queries 
supported by the prototype system being explained. Details of system testing, with 
accompanying results, are then reported in Section 9.4. Section 9.5 devotes itself to a 
discussion of some of the limitations of the prototype database system, with special 
attention given to its inability to cope with multi-valued surfaces. Several methods are 
proposed as to how this particular limitation can be removed. Finally, Section 9.6 

provides a chapter summary and conclusion. 

9.2 Database Description and Creation. 

A prototype database system, termed the multiresolution geological database (MGD), 

which is based on the MGM design, has been implemented in c on a SUN workstation. 
Advantage is taken of the reusability of many of the routines used in the MTSD 

systems. Data storage is again provided by use of the ISAM file handling library. Note 

that the MGD is limited to working with surfaces which are single-valued with regards 
to the xy-plane. There are two reasons for this restriction, the first being the fact that 
dealing with single-valued surfaces is much simpler than dealing with multi-valued 
surfaces. While the author admits that this reason was the primary factor for opting for 

a single-valued approach, a second reason was also taken into consideration. This 

concerned the fact that the subsurface data obtained from BGS was known beforehand 

to represent single-valued surfaces (this information was obtained from BGS). If this 
fact was not known, it might well have been the case that more effort would have been 
directed towards finding solutions to the creation of a multi-valued surface model. As 
it is, some thought has been given to this problem, a report of which is given in Section 
9.5.1. An overview of the ISAM database architecture is given in Figure 9.1. 

9.2.1 Primary Files. 

The first stage in the database creation process is to load the BGS data (that is, the 

ground surface data, outcrop data and subsurface data), currently stored in flat (one 
data item per line), sequential (that is, not indexed) files, into the ISAM Primary Files 
(Figure 9.2). The ground surface data file, which consists of a list of 3-D coordinates, is 
loaded into the Primary Ground Surface Points File. When doing so each point is 

assigned an unique identifier (point_id). 
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Figure 9.1 - The multiresolution geological database (3 levels). 
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Figure 9.2 - The Primary Files. 

The original BGS outcrop data is contained in four files, namely the object file, the 

polygon feature file, the line feature file and the point feature file. The object file 

consists of a series of object definitions. Each object definition is made up of an unique 
identifier, an object description (a character string), an object type identifier (region or 
fault) and a list of references to its constituent parts, details of which are held in either 
the polygon feature file, line feature file or point feature file. Each part reference is 

made up of two integer values, the first indicating what type of part is being referenced 
(that is, polygon, line or point) and the second giving the unique identifier of that part. 
The object data is loaded into the Primary Outcrop Objects File, each object reference 
of which consists of an object identifier (object id), an object type identifier 

(object-type), an object description (object desc) and lists of the polygon 
(polygon_ids), line (line-ids) and point (point ids) features which make up that object. 
The polygon feature file is made up of a list of polygon definitions, each of which 
consists of an unique polygon identifier and references to the component line features 

(definitions of which are currently held in the line feature file). The polygon data is 
loaded into the Primary Outcrop Polygons File, each record of which stores a polygon 
identifier (polygon_id) and the list of line features (line_ids) from which the polygon is 

made up. In a similar fashion, the line feature file contains a series of line definitions, 

each made up of an unique line identifier and a list of references to constituent points. 
Each line definition also records the object identifiers of the two adjacent outcrop 

region objects. The line definitions are loaded into the Primary Outcrop Lines File, each 
line being defined by a line identifier (line_id), a list of component points (point_ids) 

and its adjacent outcrop region references (object-left and object right). The point 
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feature file contains a list of 2-D points, each of which has an associated unique point 
identifier. This information is loaded into the Primary Outcrop Points File, each point 
being assigned a NULL z value during the process. It is noted that the lists stored in 

these ISAM files (polygon_ids, line_ids, point ids) employ the chaining mechanism as 
described in Section 6.3.1. 

Each of the n subsurface horizons to be represented in the model has a subsurface 

elevation file associated with it (see Section 8.5.3.2), the format of which is the same as 

that of the ground surface data file (that is, a list of 3-D coordinates). The data from 

each of these files is loaded into a corresponding Primary Subsurface Points File. 

During this process each point is assigned an unique point identifier (point_id). 

During database construction, and its subsequent usage, it will often be necessary to 

retrieve information about a particular point, that is its coordinate values, given its 

unique identifier (point id). However, at this stage there is no way of knowing in which 

primary file this information is held, that is to say, the point could be stored in the 

Primary Ground Surface Points File, the Primary Outcrop Points File or any one of the 

Primary Subsurface Points Files. Retrieval of information using this set-up will be prone 

to inefficiency due to the possible involvement of primary files which do not contain 
the required information. In order to overcome this problem, certain constraints are 

placed on the unique identifiers assigned to the points of a particular primary file. The 

method adopted is to insist that all points held in a particular primary file are given 
identifiers which lie within a given range, this range not being allowed to overlap with 
the ranges of other primary files. As an example, it might be decided that all points 
held in the Primary Ground Surface Points File are assigned identifiers in the range 1- 

1000, those in the Primary Outcrop Points File in the range 1001 - 2000, those stored in 

the Primary Subsurface 1 Points File 2001 - 2200, and so on. In this way it is possible 
to directly deduce the primary file in which the details pertaining to a particular 

point id are stored. 

It is also necessary at this stage to provide information for the Primary Database 

Description File. This file contains information concerning the number of levels of 

generalisation to be created (num_of levels), and the lateral error (lateral-error) and 

vertical_error (vertical error) associated with each of these levels. This file also stores 

the order in which subsurface horizons appear in the geological sequence. 

9.2.2 Quadtree Initialisation. 

The second stage of the database creation process is to initialise the quadtree files. 

Spatial indexing is provided on outcrop objects, ground surface triangles and the 

triangles of each subsurface triangulation patch. The spatial indexing is also separated 
into levels of generalisation. Therefore at each level of the database there is a Ground 
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Surface Quadtree File, an Outcrop Object Quadtree File, and a Subsurface Quadtree 
File for each subsurface triangulation patch (1 patch per subsurface). In each of the 

quadtree files a record consists of a cell identifier (cell id), the size of the cell 
(cell-size) and a list of references to data items which intersect the cell. In the case of a 
Surface Quadtree these references will be to triangles (tri_ids), whereas the Object 
Quadtree File will reference outcrop objects (object ids). The cell identifier is taken to 
be the Morton code of the bottom left-hand coordinate of the cell. This identifier is 

coupled with the cell size to record the location and extent of the cell. The maximum 

number of data item references per cell is set, arbitrarily, to 10, for all quadtree files. 

At this stage of database creation no surface triangles for either the ground surface 
horizon or any of the subsurface horizons will have been created. Therefore, each of the 

corresponding quadtree files (at each level) are initialised as empty (that is, one cell, 
with no triangle references, covering the full areal extent of the data). Each of the 
Object Quadtree Files is also initialised to empty. This is because, at this stage, no 
object generalisation has taken place and thus the spatial extent of individual objects 

at specific scales is not know. 

9.2.3 Generalisation of Outcrop Objects. 

Stage three of the database creation process involves the generalisation of the outcrop 
objects held in the Primary Outcrop Objects File, and the storage of the resulting 

simplified objects. The MGD assumes that all outcrop objects, polygon features and 
line features are present at every level of the database. This is due to the absence of 

generalisation functions in which objects, polygons and lines are created and deleted. In 

the case of outcrop objects and polygon features the MGD also assumes that their 

constituent part descriptions do not change between levels. Therefore, there is need to 

store outcrop object and outcrop polygon descriptions only once, and this is catered 
for by the Outcrop Objects File and the Outcrop Polygons File (Figure 9.1). Each record 
in the Outcrop Objects File corresponds to a single outcrop object and consists of an 
object identifier (object id), an object type identifier (object-type), an object 
description (object_desc) and lists of the polygon (polygon ids), line (line-ids) and 

point' (point_ids) features which make up that object. Each Outcrop Polygons File 

record refers to a particular polygon and consists of a polygon identifier (polygon-id) 

and the list of line features (line-ids) which make up the polygon. 

Object generalisation in some measure is achieved by applying the Douglas-Peucker 

algorithm to each of the line features (held in the Primary Outcrop Lines File) from 

which an object is made up. For each line feature, the Douglas-Peucker algorithm is 

applied for each of the k levels of generalisation, with the appropriate error tolerance, 

obtained from the Database Description File (an exact copy of the Primary Database 
Description File), being applied in each case. The results obtained from the 
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generalisation of a single line feature are initially held in a main memory line 

generalisation tree. Permanent storage of these results is provided by the Outcrop Lines 

Files, of which there is one for each level in the database. Each Outcrop Lines File 

record can be thought of as a level in a line generalisation tree. An individual line 

feature (line_id) is described by a list of constituent points (point-ids), and a list of 

sequence numbers (seq_nos) indicating the position of each point in the original line 

description. The adjacent outcrop regions pointers for each line are stored in the Line 

Adjacency File, each record of which is made up of a line identifier (line-id) and 

references to the outcrop objects which lie to that line's left (object left) and right 
(object_right). After all lines have been generalised it is possible to insert object 

references into each of the object quadtrees. 

During line generalisation it becomes evident that some points are not required by the 

database, that is, they are not selected by the Douglas-Peucker algorithm at any level 

of significance. When a point is selected, it is stored in the Outcrop Points File at the 

appropriate level of the database, and deleted from the Primary Outcrop Points File. 

Each Outcrop Points File record refers to a single point and consists of the point's 

unique identifier (point_id) and its x, y and z coordinates (x-value, y-value and 

z value). 

9.2.4 Creation of Constrained Delaunay Pyramids. 

The final stage in the database creation process is to create the constrained Delaunay 

pyramids needed for each surface represented in the model, that is, the ground surface 

and each subsurface. A method for constructing each of these pyramids has been 

described in Section 8.4.4. The database arrangement for storing a single pyramid is the 

same as that for the pyramid storage in the MTSD (see Section 6.2.1). Consider the 

storage of the ground surface pyramid, CDPg. Three database files are required per 

level to store this pyramid, namely, the Ground Triangle File, the Ground Internal File 

and the Ground Boundary File. Each Ground Triangle File holds details of the triangles 

which exist at its particular level in the pyramid. Each record in the file corresponds to 

a triangle and consists of a triangle identification number (tri_id), a flag (tri_type) 

indicating the triangle type (0,1 or 2 corresponding to internal, boundary or external) 

and, where required, a pointer (geoirr id) to the appropriate record in either the Ground 

Internal or Ground Boundary File. If a triangle exists at more than one level, in the form 

of a boundary or external triangle in the lower level, it will have the same tri id at each 

level. The Ground Internal File holds the full geometry and adjacency information for 

internal triangles. The Ground Boundary File holds the adjacency information for 

boundary triangles, the vertices of which are found by obtaining details from a higher 

level Ground Triangles File. There is no need to have a Ground External File since 

adjacency and geometry information of external triangles is found by retrieving details 

from a higher level. In a similar fashion, each of the subsurface pyramids require three 
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files per database level. For a particular subsurface, i, these files will be Subsurface i 
Patch 1 Triangle File, Subsurface i Patch 1 Internal File and Subsurface i Patch 1 
Boundary File. During the creation of pyramids, points are included at a particular 
level according to either their contribution to the form of a surface or their level 

assigned by the Douglas-Peucker algorithm. Whenever a point is chosen to be included 

in a pyramid it is added to the appropriate points file and deleted from its primary 
file. After each pyramid is created the appropriate quadtree files are updated. 

During the creation of the subsurface pyramids fault objects are extrapolated onto 
subsurface triangulations, creating extrapolated fault objects (Section 8.4.4.3). These 

objects are always made up of extrapolated line features, which are themselves made 
up from extrapolated points. The extrapolated line features are stored in the 
Extrapolated Lines Files, of which there is one for each level in the database. The 
format of these files is the same as that of the Outcrop Lines Files. Extrapolated points 

are stored in the Extrapolated Points Files, the format of which corresponds to that of 
the Outcrop Points Files. 

9.3 Database Retrieval and Update. 

A number of basic database retrieval operations are included as part of the prototype 

system. These operations allow for the retrieval of the ground surface, outcrop objects 

and each of the subsurface horizons at different levels of detail and for particular areas- 

of interest. Three parameters are needed to define a specific query. The first parameter 
indicates what type of information is to be retrieved. The information type is described 

in terms of an integer code value, with -1 referring to outcrop objects, 0 to the ground 

surface, and the values 1,2,....., n corresponding to each of the n subsurface horizons. 

In the case of the BGS data the values 1,2 and 3 are assigned to the LLL Formation, 

the GRF Formation and the NS Formation respectively. The second query parameter 

specifies at which level of detail the information is required and is defined by an integer 

value corresponding to the required level. The third parameter defines the area of 
interest over which information is required. This area is defined in terms of a bounding 

rectangle which is described by two x, y coordinate pairs, the first corresponding to the 
bottom left hand corner of the bounding rectangle, the second to the top right hand 

comer. As an example, consider a query to retrieve subsurface horizon GRF at detail 

level 3, the area of interest being a 1000m square region with bottom left hand corner 

coordinates (40000,20000). The corresponding MGD query would be (2,3,40000, 

20000,41000,21000). 

No database update operations are provided by the prototype system. However, it is 

pointed out that the underlying data structures on which the database is based (that is, 

the CDP, the line generalisation tree and the quadtree) in their original form allow for 

update. It therefore follows that the MGD will lend itself to the future inclusion of 
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update operations. Note also that the point and edge insertion algorithms used in the 

creation of the CDPs are themselves dynamic and could readily be adapted to 

facilitate the insertion of new data. 

9.4 Testing the MGD System. 

The MGD system has been used to model terrain, outcrop and borehole data supplied 

by BGS. The test data lies within the same 2km x 2km region as that described in 

Section 6.2.4. The terrain consists of 380 points, the distribution of which is shown in 

Plate 9.1. The outcrop data, illustrated in Plate 9.2, consists of 20 objects made up 

from a total of 20 polygons and 143 lines. The objects represent geological outcrop 

regions and geological faults. There are 81 boreholes situated within the test site (Plate 

9.3), which provide evidence of 3 subsurface horizons, namely, the LLL (Lincolnshire 

Limestone) Formation, the GRF (Grantham) Formation and the NS (Northamptonshire 

Sands) Formation. When processed as described in Section 8.4.4.2 the borehole data 

gives rise to 3 subsurface elevation files, corresponding to each subsurface horizon. The 

LLL Formation is described by 54 points, the GRF Formation by 80 points and the NS 

Formation by 78 points. 

Plate 9.1 - The distribution of terrain data (380 points). 
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Plate 9.2 - The outcrop data, consisting of 20 objects (13 outcrop regions and 7 
faults). 

Plate 9.3 - The distribution of boreholes (81). 
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A series of test databases have been created with various error tolerances applied in 

each case. The results of database creation performance tests and database 

comparison tests, similar to those described in Chapter 6, are shown in Figure 9.3 and 
Figure 9.4 respectively. Database creation time appears satisfactory, as was the case 
with the 2-D MTSD implementations described in Chapters 6 and 7. The comparison 
tests again highlight the relative merits and demerits of the multi-scale approach. 
Storage savings gained when compared to multiple representation are at the cost of an 
increase in query response time, while when compared to a generalisation at run-time 
approach, reduced response time is countered by an increase in storage. 
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Figure 9.3 - Database creation performance results for MGD. 
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Figure 9.4 - Results of comparison tests between MGD, generalisation at run-time 
and multiple representation. 

Database 3 (levels 1 and 3) is illustrated in Plates 9.4 - 9.23. 
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Plate 9.4 - Database 3, level 1 ground surface triangulation. Plan view. 

Plate 9.5 - Database 3, level 1 ground surface triangulation. Shaded, perspective view. 
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Plate 9.6 - Database 3, level 1 LLL triangulation. Plan view. 

Plate 9.7 - Database 3, level 1 LLL triangulation. Shaded, perspective view. 
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Plate 9.8 - Database 3, level 1 GRF triangulation. Plan view. 

Plate 9.9 - Database 3, level 1 GRF triangulation. Shaded, perspective view. 
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Plate 9.10 - Database 3, level 1 NS triangulation. Plan view. 

Plate 9.11 - Database 3, level 1 NS triangulation. Shaded, perspective view. 
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Plate 9.12 - Database 3, level 1 subsurface triangulations. 

Plate 9.13 - Database 3, level 1 all triangulations. 

148 



www.manaraa.com

Chapter 9 A Multi-Scale Geological Database 

Plate 9.14 - Database 3, level 3 ground surface triangulation. Plan view. 

Plate 9.15 - Database 3, level 3 ground surface triangulation. Shaded, perspective view. 
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Plate 9.16 - Database 3, level 3 LLL triangulation. Plan view. 

Plate 9.17 - Database 3, level 3 LLL triangulation. Shaded, perspective view. 
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Plate 9.18 - Database 3, level 3 GRF triangulation. Plan view. 

Plate 9.19 - Database 3, level 3 GRF triangulation. Shaded, perspective view. 
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Plate 9.20 - Database 3, level 3 NS triangulation. Plan view. 

Plate 9.21 - Database 3, level 3 NS triangulation. Shaded, perspective view. 
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Plate 9.22 - Database 3, level 3 subsurface triangulations. 

Plate 9.23 - Database 3, level 3 all triangulations. 
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9.5 Problems and Discussion. 

The prototype GSIS described in Section 9.2 is not without its limitations, the most 

notable of which is its inability to cope with multi-valued surfaces. This particular 

shortcoming is one which had been foreseen, but for the particular data sets modelled 
in this thesis was not thought to present a problem. However, some thought has been 

given as to how multi-valued surfaces can be catered for in the future, a report of which 
is given here. Other problems concerning the prototype system only came to light during 

the testing of the system. These mainly concerned invalid intersections between 

adjacent surface triangulations. Solutions to these problems have been found, and 
implemented, and are also described here. 

9.5.1 Coping with Multi-Valued Surfaces. 

As indicated at the start of Section 9.2, a limitation of the prototype system is its 

inability to cope with multi-valued surfaces. This problem does not prove a hindrance 

for ground surface models, or indeed for some subsurface models such as those 

obtained from the BGS data. For example, consider a set of points S. representing a 

portion of the Earth's surface. Each point of Sg consists of an x, y and z coordinate. 
For the purpose of constructing the Delaunay triangulation (2-D Delaunay tessellation) 

of Sg it is usual to consider only the x and y values of each point and neglect the z 

value. This is analogous to only considering the x, y value of the intersection each point 

makes with the xy-plane when projected in a vertical direction towards that plane. The 

z value is selected for omission from considerations, as opposed to either the x value or 

y value, on account of the Earth's surface being much less likely to be multi-valued in 

the xy-plane than in the yz-plane or xz-plane. 

(a) 

Figure 9.5 - The effect of triangulating on planes. (a) A set of points triangulated on the 
xy-plane. (b) The correct surface, obtained by triangulating on the yz-plane. 
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This fact would not necessarily be true for a set of points SS representing a geological 
boundary in the subsurface. Here the surface is more likely to be multi-valued in the xy- 

plane than for Sg. This is due to the complex faulting and folding which takes place in 

the subsurface. In general, such surfaces may be of any orientation and may be 

overfolded, at least relative to the horizontal plane. As an example, Figure 9.5a shows 
the surface which results from the Delaunay triangulation in the xy-plane of a set of 

points, which is in fact quite different from the true surface, shown in Figure 9.5b. This 

is due to the fact that the true surface is multi-valued in the xy-plane. Therefore, an 

alternative method for constructing a surface triangulation of SS has to be found. 

9.5.1.1 Data Segmentation. 

With a prospective method in mind, attention is drawn to work described by 

Boissonnat [113], in which procedures for the Delaunay triangulation, in 2-D and 3-D, 

of arbitrarily oriented surfaces are presented. In the 2-D case, collections of vertices are 

projected onto local planes on which triangulation takes place. Vertices which are 

triangulated together are assumed to belong to a neighbourhood of vertices which 

represent a surface which is single-valued relative to the local plane, which itself is 

derived by a least square fit. This method is limited in that it requires that vertex 

neighbourhoods be defined in advance. If data sampling is dense then this is not a 

problem since it can be assumed that any vertices lying within a reasonable distance of 

another vertex is in the neighbourhood of that vertex. When working with subsurface 

geological data, this assumption would not always hold true, since data may be 

sparsely distributed, and at the same time be representing complex structures. 
However, if some other means by which neighbourhoods could be defined was 

available, then the method would seem to be suited to the task in hand. One possible 

way in which this might be achieved is by dividing the vertices into subsets according 
to localised measurements of gradient (the trend of the surface). Another technique 

could involve a geologist interactively splitting up the data via a suitably designed 3-D 

graphics interface. Once all neighbourhoods are defined, they are each triangulated 

separately as normal, except that projection is onto a local plane of appropriate 
orientation. Triangulations, having been constructed, could then be be 'zipped' across 

common borders to form a complete surface. Algorithms for 'zipping' triangulations 
together in the xy-plane are given in the literature [11,12]. These algorithms could be 

adapted to cater for arbitrary planes. 

It may also be the case that the best plane of projection is not always the least square 
plane. In such cases, the availability of other information might assist in deciding upon 
the best plane. An experimental program has been implemented which uses dip 
information to decide on what this plane may be. For example, given sufficient dip 

information, the program correctly identifies the yz-plane to be more appropriate than 
the xy-plane as the plane of projections for the data given in Figures 9.5a and 9.5b. 
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Projecting onto the yz-plane does in fact produce the correct surface triangulation. 

9.5.1.2 Computing the 3-D Delaunay Tessellation. 

A second approach to solving the multi-valued surface problem is to consider 

algorithms which compute the 3-D Delaunay tessellation, such as those published by 

Riedinger et al [117], Tanemura et al [118], Devijver and Dekesel [119] and Boissonnat 

[113]. For the problem being discussed here, the approach would be to use the 3-D 

tessellation only as a temporary structure, from which the bounding surface 
triangulation could be extracted. The extraction of the surface would be assisted by 

taking into consideration any known constraints, such as dip, on the data. The paper 
by Devijver and Dekesel describes a dynamic procedure where points are inserted one 

at a time into an existing tessellation which is repeatedly updated. This method is 

equivalent to the 2-D algorithms already implemented and could therefore be well 

suited to a multiresolution model. Boissonnant suggests a 3-D volumetric approach 

where the surface represented by a set of vertices is found by determining the boundary 

of a 3-D tessellation. Initially the volumetric tessellation occupies the entire convex hull 

of the vertices, after which tetrahedra occupying what are assumed to be concavities of 

the surface are progressively eliminated. A limitation of this method is that the 

resulting triangulated surface can only be expected to correspond topologically with the 

real surface if the original vertices have been obtained by a relatively regular and dense 

sampling of the object surface. 

9.5.2 3-D Spatial Conflict. 

During the testing of the 3-D multi-scale database it became apparent that in certain 
instances topological errors, or spatial conflict, had occurred. These errors involved 

invalid intersections between adjacent surfaces.. For example, each of the subsurface 

triangulations intersected the ground surface triangulation in a number of places. In 

some cases a subsurface triangulation was found to intersect one or more other 

subsurface triangulations. Through experimentation it was found that the spatial 

conflict was caused in one of three ways. An explanation of each cause of error, and 

solutions, is now presented. 

9.5.2.1 Conflict due to Data Set Discrepancies. 

This error type came to light as a result of observing triangulated surfaces of the type 

shown in Figure 9.6a. This error, in the first instance, is considered to have occurred as 

a result of a sampling discrepancy existing between the ground surface data and the 

subsurface elevation data (obtained from the borehole data). The discrepancy causes 

spatial conflict between the two surface triangulations. A partial solution to this 

problem is to ensure that the data sets in question are as well matched as possible. 
This has been achieved by introducing the top of borehole height measurements 

156 



www.manaraa.com

Chapter 9A Multi-Scale Geological Database 

(included in the original borehole data) as additional elevation data in the ground 
surface data file (Figure 9.6b). This has the effect of offering a better match between 

data sets, and subsequently, an improved model. 

CROSS-SECTION 

Ground 
surface 

Subsurface (a) 

CROSS-SECTION 

(6) 

" terrain data point 

o point derived from 
borehole data. 

Figure 9.6 - Spatial conflict due to a data discrepancy. (a) The subsurface incorrectly 

intersects the ground surface. (b) The top of borehole measurements are introduced in the 
terrain data, in this case resulting in spatial integrity. 

A further problem is encountered due to discrepancies between the outcrop data, 

ground surface data and subsurface data. Consider the cross section shown in Figure 

9.7a which contains no conflict. However, if the ground elevation point i was not 
included in the ground surface data set, which will sometimes be the case with real 
data, the cross section will appear as shown in Figure 9.7b. Here the ground surface 
triangulation has become co-incident with the subsurface triangulation. It can be 
deduced that such conflict occurs when ground surface triangles are made up entirely 

of points which belong to the same region outcrop object. A first pass attempt at 

resolving this situation is to check if there are any currently unused subsurface points 
(held in the appropriate primary subsurface points file) which lie within one of the 

offending ground surface triangles. If a suitable subsurface point is found it is added to 

the subsurface triangulation. Also, to ensure consistency between triangulations, the 
top of borehole height measurement is added as an elevation point to the ground 

surface triangulation. If no suitable subsurface point is found the next step is to check if 

any suitable currently unused ground elevation point (held in the Primary Ground 

Surface Points File) is available. If an unused ground elevation point is found which lies 

within an offending triangle, it is only inserted if it lies above the current ground surface 
triangulation. A point which lies below the triangulation, if inserted, will result in 
intersection between its triangulation on the currently co-incident subsurface 
triangulation. 
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Figure 9.7 -A second error due to a data discrepancy. (a) Surfaces contain no conflict. (b) 

Point i is removed resulting in co-incidence of the base of the LLL Formation and the ground 
surface. 

If no suitable unused point is available the solution is to create and insert a dummy 

point into either the ground surface triangulation or subsurface triangulation in such a 

way as to remove the conflict. Which of these is the better option will depend on the 

form of each of the surfaces. For example, in Figure 9.7b it would appear sensible to 

create a dummy point in the ground surface triangulation in such a way as to slightly 

raise the ground surface elevation in its vicinity. In Figure 9.8 a better approach would 

seem to be to insert a dummy point in the subsurface triangulation, slightly lowering the 

subsurface elevation in its vicinity. Automation of this choice making process would 
involve examination of all triangles, and their respective gradients, within the vicinity 

of the place where spatial conflict has occurred. This process has not been 

implemented in the current version of the MGD. At present the dummy point is always 
inserted in the ground surface triangulation. 

CROSS-SECTION CROSS-SECTION CROSS-SECTION 
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(a) (b) (c) 

Figure 9.8 - Insertion of dummy point to restore integrity. (a) The correct surface cross- 

section. (b) Surfaces in conflict. (c) The solution is to add a dummy point i into subsurface. 

9.5.2.2 Conflict due to Generalisation. 

The problem of spatial conflict caused by application of the Douglas-Peucker algorithm 
to line data has been addressed in Appendix 1. During testing of the 3-D system it was 

observed that spatial conflict also occurred as a direct result of surface generalisation. 
The conflict is in the form of intersections between surface triangulations (Figure 9.9a). 

This problem can be remedied by re-inserting currently unused points in areas of 
conflict in way analogous to the 2-D solutions proposed in Append? 1. However, this 
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is not the method used in the MGD system at present. 

CROSS-SECTION CROSS-SECTION 

surface A 

surface B 

(a) (b) 

Figure 9.9 - Conflict due to generalisation. (a) The inclusion of point i in surface A causes 

conflict with surface B. (b) The solution is to include point j in surface B, point j being derived 
from same borehole as point i. 

A simpler approach is adopted in which a condition is placed on certain of the points 

selected for a particular surface. The points to which the condition is applied are those 

which have been derived from borehole data (that is, subsurface elevation data and 

tops of borehole ground surface data). The condition insists that if any such point is 

selected for use in a particular surface triangulation, then all points derived from the 

same borehole as that point must also be added to the appropriate previously created 

surface triangulation and be included in any yet to be created surface triangulations, 

thus ensuring consistency between adjacent surfaces (Figure 9.9b). This method, while 

not being optimal with regards the number of points included in the model, is effective 

in removing spatial conflicts caused by surface generalisation. 

9.5.2.3 Conflict due to Incorrect Insertion of Constraints. 

Despite application of the conflict resolution techniques described in Sections 9.5.2.1 

and 9.5.2.2, conflict still occurred between the ground surface triangulation and certain 

subsurface triangulations. The reason for this problem was diagnosed as being an 
incorrect assumption made about the topographic properties of the geological outcrop 

region objects. The assumption made is that the edges from which these objects are 

made have special influence on the topography of a surface, in much the same way as 
the edges defining a ridge influence ground surface topography. Therefore, in the 

algorithms used to date, the topographic surface is forced to conform to edge 

topography when edges are inserted as constraints. In other words, the edge data 

assume greater significance than the surface data. Figure 9.10 shows how this 

assumption can affect ground surface and subsurface spatial integrity. It is suggested 
here that the edges from which a geological outcrop boundary are made up to do not 

possess such topographic significance and therefore, when inserted into the surface 
triangulation, they should be forced to conform to surface topography. 
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Figure 9.10 - The effect of forcing the ground surface to conform to geological outcrop 

region object constraints. (a) The correct cross section. (b) Conflict resulting from the 
insertion of constraint. 

A constraining algorithm which adopts a more surface conforming approach is given by 

Kraak and Gazdzicki [69]. The method addresses the problem of inserting an edge, 
defined by its end points pl and p21' into an existing triangulation. It is assumed that 

the points are already part of the triangulation. The algorithm begins by testing if the 

edge already exists. If so, the algorithm terminates. If the edge does not exist the next 

step is to generate a dummy point pd with x and y coordinates taken as the mid-way 

point between pl and p2. The z value of pd is interpolated using the current surface 

triangulation. The algorithm is now repeated, in turn for edge (pl, pd) and edge (pd, p2). 
The recursive procedure repeats itself until eventually p, and pi are connected by a 

series of one or more co-linear edges. 

This surface conforming algorithm now forms part of the MGD triangulation library 

and is used as part of the model creation process. When triangulating the ground 

surface, any outcrop polygon edge inserted as a constraint is inserted as a surface 

conforming edge. Dummy points, created during this process are stored in the Outcrop 

points File. They are distinguished from other points by being assigned negative point 
identifiers. It is also necessary to update the line descriptions in the Outcrop Lines File. 

It is should be noted that a dummy point is only relevant to the level at which it was 
created. Therefore when reconstructing a line at a particular level of significance, all 

points which have negative identifiers and are at a higher level in the database should 
be ignored. The triangulation of subsurfaces reverts to the edge conforming constraining 

algorithm. This is to ensure that there is an exact match between the meeting points of 
the ground surface and subsurface. 

The Kraak and Gazdzicki algorithm, while appearing to solve the problems caused by 

the test data sets, does not insert edges which conform absolutely to the triangulated 

surface. It does however produce a constrained triangulation which more closely 

conforms to the original triangulation than the previously used algorithm (see Section 
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2.4.4). An algorithm which inserts constraints which conform precisely to the surface 
has also been implemented. The algorithm is illustrated in Figure 9.11. Consider an edge 
(Pa, Pb) to be inserted into an existing triangulation T. It is assumed that pe and Pb 

already belong to T and that the edge (Pa, Pb) does not exist. It follows that the 

proposed edge makes one or more intersections with existing triangle edges. Let the 

number of intersections be n and dummy points pl... p,, be created. The height value of 

each dummy point is interpolated from the current triangulation. It is now possible to 

insert the series of edges (pa, pi), (Pl' P2)....... (Pn. v p�) and (pa, Pb) into the 

triangulation, thus forming a series of co-linear , surface conforming edges between pa 

and Pb* A disadvantage incurred by this method, when compared to the Kraak 

algorithm, is an increase in the number of dummy points. 

P 
a 

pbp 

a 

p 

(a) (6) 

Figure 9.11 - The insertion of a surface conforming constraint. (a) Triangulation before 
insertion. (b) Triangulation after insertion. 

9.6 Summary and Conclusions. 

This chapter has described a successful implementation of the MGM. Three types of 
data, namely, terrain data, outcrop data and borehole data, have been combined to 

form a multi-scale 3-D triangulation-based geological model, which is stored efficiently 
in an ISAM database. The use of outcrop objects as constraints in both ground surface 

and subsurface triangulations, thus forming an accurate definition of where each 

subsurface intersects the ground surface, appears to offer a novel, and accurate, means 
by which geology can be represented. This technique is of equal benefit when applied in 

either a single-scale or multi-scale environment. The multi-scale aspect of the model 

also offers new and useful tools for the geologist. Some of the issues concerning the 

modelling of multi-valued surfaces have also been addressed. It is thought that a 

method based on the segmentation of data into locally single-valued patches offers the 
best prospect for future success with regards obtaining a solution to this problem. 
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10.1 Introduction. 

Thesis Summary and Conclusions 

This thesis has described the research undertaken in order to develop and implement a 
number of data storage schemes suited to the efficient multi-scale representation of 
integrated spatial data. In this concluding chapter, Section 10.2 begins with a summary 
of the research, outlining both the benefits derived and conclusions reached. Section 

10.3 then provides suggestions as to how the work might be progressed in the future. 
Final remarks are made in Section 10.4. 

10.2 Project Summary and Achievements. 

The overall aim of the work reported in this thesis can be summarised as the design 

and implementation of data storage schemes, or data models, suited to the efficient 
multi-scale representation of integrated spatial data. In addition to model design, the 
fulfilment of this aim has involved the development of methods by which the models 
can be created. These intentions were borne out of an observation that current GIS, and 
their geological counterpart GSIS, are poor in terms of offering data modelling facilities 

which include the integration of data of different types, and that they cater for data at 

only a single-scale. 

In Chapter 1 the author has attempted to demonstrate the limitations of the various 
approaches adopted by current systems and has given reasons as to why the use of 
integrated multi-scale methods will be of benefit. In particular, the thesis has 

concentrated on finding solutions to two specific problems. The first, relating to GIS, 

has involved providing an efficient means of storing a combination of terrain data and 
topographic feature data at multiple scales. This data has been assumed to be 

spatially extensive. The second problem concerned the efficient multi-scale 

representation of 3-D geological data, consisting of terrain, outcrop and borehole data. 

Again, the assumption is that this data is spatially extensive. Solutions to both 

problems, in the form of ä number of data model designs and database 

implementations, have been found and have been reported in the thesis. Details of 
publications relating to this work are given in Appendix 3. 

10.2.1 Combining Terrain and Topographic Data at Multiple Scale. 

Initially the work concerned itself with the integration and multi-scale representation of 
the two geographic data types, namely, topographic feature data and terrain data. 
Details regarding this part of the project are found in Chapters 2 to 7. It has been 

noted that GIS are currently restricted to the separate representation of topographic 
data and terrain data, while the representation of data at various scales can only be 

accommodated by adopting a multiple version approach. By comparison, an 
integrated multi-scale representation was thought from the outset of the project to have 

several distinct advantages, and be of benefit to a variety of disciplines. These 
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advantages have been outlined in Chapter 1. Chapters 2,3 and 4 have provided an 

overview of currently available data structures suited to the storage of the data types 

being considered. These chapters have revealed that while some current data structures 

meet certain of the requirements of the proposed data storage scheme, none meet all 

the requirements. Following the review it was decided that the best approach to 

meeting the full requirements of the proposed scheme would be to adapt and merge 

those current data structures which appeared most useful in such a way as to form the 

integrated multi-scale data model. This resulted in three such data structures, namely, 

the line generalisation tree, the constrained Delaunay pyramid (CDP) and the fixed 

grid, being adopted for use as the basis for what has been termed the Multiresolution 

Topographic Surface Model (MTSM), details of which are given in Chapter 5. 

The MTSM is a new data storage scheme which offers efficient multi-scale storage of, 

and access to, topographic data and terrain data. Data integration is achieved by 

embedding the line features making up topographic objects as constraints within a 
CDP. Line definitions are stored in a series of line generalisation trees. Efficient spatial 

access is provided by means of an adaption of the fixed grid method. The MTSM is 

created by means of a construction algorithm which is based on a combination of the 

Douglas-Peucker line simplification algorithm and De Floriani's error-directed 

constrained Delaunay triangulation algorithm. Chapter 5 also provides a brief 

argument in justification of the use here of the Douglas-Peucker algorithm. This is 

included in answer to a series of comments in recent papers which have shed doubt on 

the suitability of the Douglas-Peucker algorithm to line generalisation. 

Two prototype database systems, MTSD 1.0 and MTSD 2.0, based on the MTSM 

design have been implemented. Details regarding these implementations are found in 

Chapter 6. The first implementation, MTSD 1.0, adopts the relational database 

ORACLE as its primary data storage medium, while MTSD 2.0 makes use of an ISAM 

file handling library. The performance of both systems has been evaluated in a series of 
tests. These tests have served to demonstrate the viability of the MTSM and its 

accompanying construction algorithm. System testing has also emphasised the relative 

advantages and disadvantages of adopting a multi-scale approach as opposed to 

either generalisation at run-time or multiple representation. The generalisation at run- 
time method has been shown to offer data storage benefits when compared to MTSM, 

but at the expense of an increase in data retrieval time. Conversely, the multiple version 

approach provides a quicker response to queries than MTSM, but suffers in that it 

incurs an increase in data storage. 

Chapter 7 begins by describing a new version of the Implicit TIN data storage scheme. 
This new version offers improved performance when compared to the old in that it 

allows for the insertion of constraining segments and guarantees to produce the same 
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triangles as would be produced by a conventional constrained Delaunay triangulation 

algorithm. Included as part of the new Implicit TIN is a new constrained Delaunay 

triangulation algorithm, specifically designed for use in the Implicit TIN environment. 
Advantage is taken of these improvements to the Implicit TIN when it is applied to an 
Implicit version of the MTSD. The Implicit system, termed I_MTSD, offers considerable 

savings in storage when compared to MTSD 2.0, at the cost of only a slight increase in 

query response time. A further advantage of the Implicit TIN approach is that it offers 
flexibility with regard to the choice of which constraining objects are included in a 

particular triangulation. 

10.2.2 Combining Geological Data Types at Multiple Scale. 

Chapters 8 and 9 are concerned with extending the previously described work into 3-D 

and applying it to geological data. These chapters are related to the 3-D GIS project 

currently being carried out at BGS. Chapter 8, after giving a brief introduction to the 

topic of 3-D GIS, or GSIS, proposes a design for the ideal GSIS data model. The 

proposal suggests that a GSIS data model should be able to accommodate objects 
derived from various sources of data, allow for the multi-scale representation of these 

objects and provide spatial indexing on objects. It is also necessary to include 

algorithms for creating the model. The proposal suggests that two fundamental object 

types need to be accommodated, namely, hard-objects and soft-objects. It is put 
forward that hard-objects can adequately be catered for using a boundary 

representation method, while the octree method would appear suited to storing soft- 

objects. The model creation algorithms would need to provide facilities for object 

generalisation, integration of data from different sources and be able to cope with 

sparse data representing complex objects. It is also proposed that spatial indexing can 
be provided for by adopting an octree approach. 

Chapter 8 concludes with the description of a prototype multi-scale 3-D model design, 

the MGM, which integrates topographic data, terrain data and subsurface elevation 
data. The MGM, an extension of the MTSM, uses a series of CDPs to provide multi- 
scale storage of, and access to, ground surface and subsurface horizons. A particularly 

useful, and novel, aspect of this work is the well defined relationship which exists 
between the subsurface horizons and the ground surface. This is made possible by the 
inclusion of geological outcrop objects as constraints in both the ground surface and 
subsurface pyramids, thus creating common edges at those places where subsurface 
horizons intersect the ground surface. A method for model creation is also described 

and includes new techniques by which faults lines, present in the ground surface, can 
be automatically extrapolated into the subsurface, thus producing a more accurate 
model. 

Chapter 9 reports the details of an ISAM implementation of the prototype 3-D model. 
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The implementation, termed the MGD, has been successfully tested using data 

obtained from BGS. As was the case with the MTSD systems, comparison tests have 

shown that the MGD system performs as would be expected when compared to 

equivalent generalisation at run time and multiple version database systems. The 

multiple version approach offers a better response to queries than MGD, at the 

expense of an increase in storage costs. The MGD has been shown to provide faster 

query response times than a generalisation at run time system, but this is countered by 

an increase in storage costs. Note that the MGD system is limited in that surfaces can 

only be single-valued with regards the xy-plane. However, this has not proven to be a 

problem when modelling the BGS data set. Nevertheless, Chapter 9 has included some 

suggestions as to how multi-valued surfaces may be supported in the future. 

10.3 Future Work. 

What is apparent at the conclusion of this research project is the wide scope for future 

development of the work. Due to time constraints, many avenues of potential interest 

that have been uncovered during the project have not been fully pursued. With this in 

mind, this section gives suggestions for further work. The list of suggestions does not 
include all the ideas that have arisen but confines itself to those areas which the author 
thinks warrant most immediate attention. 

10.3.1 Scale and Generalisation. 

It is noted that in each of the new data models described in this thesis, points are 

selected for inclusion at a particular level depending on either their importance in 

describing a surface or their significance in describing a particular topographic object. 
Thus terrain data and subsurface elevation data points are selected according to their 

vertical displacements relative to the surface to which they belong, while topographic 

object points may also be selected on the basis of their lateral displacement. In the 

former case, point selection is achieved as the result of applying an error-directed point 
insertion triangulation algorithm, which can be regarded as the 2.5-D equivalent of the 

Douglas-Peucker algorithm, while in the latter case points are selected by applying a 

conventional Douglas-Peucker algorithm. It would seem that a logical progression, 

particularly in the context of the geological data model, would be to develop a 3-D 

version of the Douglas-Peucker (or any better 2-D generalisation) algorithm, in which 

points are selected on the basis of their overall contribution to the shape of the surface 

or object to which they belong. 

The issues concerning the automated generalisation of 2-D map data are currently 

receiving much attention in the literature [44,45,46,47,48]. It is apparent that much 
work is still to be done before solutions to all the problems associated with this task 

can be said to have been solved. The multi-scale models described in this thesis each 
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provide efficient storage of, and access to, generalised versions of source data. The 

generalised versions are geometric subsets of the original data and therefore data 

duplication, at least for line feature and surface representation, is avoided. Note that 

with regards topographic data this thesis has restricted itself to automated line 

simplification. It is hoped that in the future the MTSD and MGD systems will 
incorporate additional topographic data generalisation capabilities, such as, selection, 

exaggeration, combination, displacement and symbolisation, relating to polygon and 

point features, as well as to lines. Work is currently being undertaken at the University 

of Glamorgan, as part of another PhD project, which is seeking to develop functions 

which perform certain of these tasks [121,48]. The generalisation techniques adopted 
involve the map data undergoing generalisation operators that are applied to 

constraints within a TIN model. There is a definite connection between the two projects 

and obvious scope for inclusion of the more advanced generalisation operations within 
the multi-scale database systems described in this thesis. However, it must be noted 
that when applying operations such as exaggeration, displacement and symbolisation 
to assist in large changes in scale a multi-scale approach is inappropriate. This is 

because the derived, smaller scale version is no longer, in a geometric sense, a subset of 
the larger scale version. This does not however rule out the use of multi-scale data 

structures for separately representing both the smaller and larger scale versions across 
their different scale ranges. Such an approach is adopted in the multi-scale database 

suggested by Jones [122]. 

Throughout the thesis the terms 'scale', 'resolution', 'generalisation level', and other 
similar expressions, have been used interchangeably and have assumed the same 

meaning, that is, a measure of the amount of detail present in a particular set of data. 

This measure, as far as the data models presented in Chapters 5 to 9 are concerned, 
has been in terms of two error tolerance values, namely, vertical error and lateral error. 
A criticism of the work might be that no attempt has been made to relate these error 
tolerances to what professional geographers and geologists regard as scale. The author 
believes that if such relationships could be incorporated into the generalisation 

algorithms used in the model creation processes they would add considerably to the 

usefulness of the models. With regards the generalisation of topographic line data, 

attention is drawn to work reported by Abraham [52] regarding the establishment of a 
direct relationship between scale and the error-tolerance value supplied to the 
Douglas-Peucker algorithm. The approach used was to initially establish a link 

between error tolerance and the number of points selected by the Douglas-Peucker 

algorithm. This link was then used in conjunction with an adapted version of Topfer's 

Radical Law [123], which predicts the number of data objects at a derived scale given 
the number of objects at the source scale, to provide a relationship between Douglas- 
Peucker error tolerance and scale. Note that this approach to topographic 

generalisation is limited in that it views generalisation as purely a -geometric 
process 
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whereas in reality it is a highly conceptual process. However, the MTSD and MGD 

systems described in this thesis, in their present form, would benefit by the inclusion of 

this relationship (and, perhaps, a vertical error tolerance equivalent) since they are 

restricted to geometrical generalisation. 

An area of automated generalisation which does not appear to have received much 

attention in the literature is that which concerns geological data. There appears to be 

scope for a great deal of future research to be carried out in this area. Note that much 

of the generalisation reported in the literature is specifically geared towards 2-D 

geographic data. This work cannot readily be applied to the generalisation of 2-D 

geological data (that is, outcrop data) since conventions differ between the 

generalisation of geographic map data and the generalisation of geological map data. 

For example, the generalisation functions required to generalise a collection of line data 

representing a network of roads will be different from those required to generalise a 

collection of lines representing a series of faults, such as the en echelon faults shown in 

Figure 10.1. The author hopes that some of the issues relating to the generalisation of 

geological map data will be addressed in the near future. 

(a) (b) 

Figure 10.1- The generalisation of a geological map which includes en echelon 
faults. Such generalisation is only applicable to geological data. (a) Map prior to 

generalisation. (b) Map after generalisation. 

An aspect of geological generalisation which could be built into the MGD system with 

relative ease is that which concerns the classification of subsurface horizons according 
to their relevance to a particular scale. Geologists regard certain subsurface horizons as 

being of greater importance than others. A useful tool to geologists would be the ability 

to retrieve horizons according to their semantic importance. This could be 

accommodated in the MGD system by introducing a subsurface information file which 

records the range of database levels over which each subsurface horizon is significant. 
Queries involving a subsurface horizon at a particular level of detail would now need 
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to be validated, by checking if the required detail level lies within the specified range of 
levels, before being processed further. This mechanism has not been incorporated into 

the current version of the MGD system due to a lack of appropriate test data. It is the 
intention to include the facility in future versions. 

10.3.2 The Modelling of 3-D objects. 
A great deal of work remains to be done with regards the creation of the ideal GSIS 

data model. Perhaps the greatest limitation of the MGD presented in Chapter 9 is its 
inability to cope with multi-valued surfaces. Several techniques have been suggested, 
the further investigation of which would appear to be a priority for any future work. 
The data segmentation method is believed to offer the best chances of success. Other 

limitations of the MGD, such as the absence of 3-D spatial indexing and the exclusion 
of soft-object types, are a direct result of time constraints on the project. It is the 
intention to include these features in future implementations. 

Looking further ahead, it is suggested that a solution to the full automation of the 

model creation process would benefit from the introduction of Artificial Intelligence 

techniques. This suggestion appears to be vindicated by recently published literature 

concerned with the use of knowledge-bases in the management and analysis of 3-D 

geological data [115,124,125]. A knowledge-base concerned with assisting in the 

model creation process might be expected to contain information such as physical 

geological observations concerning the area being modelled (such as dip 

measurements), any knowledge the geologist may have about the data being modelled 
(that it represents a salt dome, for example) and stereotypical surface shapes (to 

which the data in question can be matched). This knowledge will be examined during 

model creation and a suggestion as to how modelling can best proceed will be 

produced. For example, knowing that a particular data set represents a salt-dome, 

perhaps due to a pattern match, could lead to the suggestion of generating a vertical 
plane of symmetry through the data, triangulating the two sub-sets thus formed (by 

projecting each, in turn, onto the plane of symmetry) and then 'zipping' the two 
triangulations together to form the complete surface. 

The method by which faults are extrapolated into the subsurface is also limited in the 
MGD system in that they require a prior knowledge of dip, throw and depth 
information. A means by which this information could be derived from source data 

would enhance the fault modelling capabilities of any future system. Mention is made 
of work reported by Walsh and Watterson [126,1271 in which methods for estimating 
the throw and dip of certain types of fault are described. It is also true that the 

characteristics of a fault are related to the type of rock in which it occurs. Another 

observation is that when no other information is available, geologists often apply 
standard characteristics when modelling a fault. For example, faults are usually 
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assumed to have a dip of about 70° in the absence of any conflicting evidence. Note 

also that when sampling is dense enough, subsurface elevation data itself can be used 
to identify the presence of faults. It can be imagined that by combining these various 

methods and sources of information in a knowledge-based modelling system a more 
fully automated, and improved, method of extrapolating fault data into the subsurface 

could be achieved. 

10.4 Final Remarks. 

There can be no doubt that spatial information systems will continue to have a great 
impact in both geography and geology. This thesis has based itself on the belief that 

such systems will benefit from data models which integrate all available data, and 

provide multi-scale representation of this data. It is hoped that this thesis has brought 

attention to these potential benefits and has gone a little way to providing data storage 

schemes, and associated model construction methods, that incorporate such benefits. 
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Appendix 1 Line Generalisation and Spatial Conflict 

A1.1 The Introduction of Spatial Conflict as a Result of Line Generalisation. 

A problem common to many generalisation operations is that of a loss of topological 
integrity as a result of performing the operation. The Douglas-Peucker algorithm is not 
immune to this problem, particularly when a large reduction in the number of points is 

involved. 

A common error which causes spatial conflict is that of self-crossing, where a line is 

forced to intersect itself as a result of removing one or more of its points (Figure A1.1). 
A more unusual error is when two portions of the same line become co-incident (Figure 

A1.2). 
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Figure AM - Self-crossing as a result of generalisation. 
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Figure A1.2 - Co-incidence as a result of generalisation. 

When dealing with collections of lines there is also the risk of introducing invalid 
intersection of neighbouring lines (Figure A1.3) or neighbouring lines becoming 

co-incident (Figure A1.4). These errors are termed neighbour intersection and neighbour 
co-incidence errors respectively. If the lines being generalised represent a collection of 
polygons, neighbour intersection can result in overlapping polygons (Figure A1.5), while 
neighbour co-incidence can result in flat polygons (Figure A1.6). 

Note that in this thesis generalisation is considered in a purely geometrical sense. No 

attempt at an automated solution to the more conceptual aspects of generalisation, 
such as feature selection, exaggeration, displacement and symbolisation, is being put 
forward. However, conceptual errors can occur as a result of applying the 
Douglas-Peucker algorithm. 
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Figure A1.3 - Neighbouring lines intersecting following simplification. 
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Figure AL4 - Neighbouring lines becoming co-incident. 
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Figure A1.5 - Overlapping polygons. 
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Figure A1.6 -A flat polygon. 
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One such example is that of introducing spikes. Such an error occurs when a line point 

nearly, but not quite, interferes with another line point or part of the same or other line, 

as a result of the generalisation (Figure A1.7). With such an error, the topological 

integrity of the line is maintained, but the resulting line will be visually displeasing. 

Muller [83] has produced an elegant solution to this particular problem. It will not be 
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addressed further here, particularly in view of the fact that the concern of this work is 

solely the topological integrity of lines and polygons. 
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Figure A1.7 -A spike introduced as the result of simplification. 

A1.2 Detecting Spatial Conflict. 

Errors of the type previously described occur either as a result of two or more line 

segments intersecting each other or two or more line segments becoming co-incident. 
Detecting error is therefore equivalent to detecting either or both of these occurrences. It 

is assumed that the source data is clean, that is, it contains no intersecting or 

co-incident line segments. 

A line can be checked for self-crossing by testing each of its constituent line segments, 
in turn, for intersection with any other of its constituent line segments. In similar 
fashion, a line with co-incident line segments can be detected by testing each of its line 

segments, in turn, for co-incidence with any other of its line segments. The detection of 
intersection or co-incidence of neighbouring lines can be carried out in a similar manner, 

checking the line segments of each line against all line segments of every neighbouring 
line. If no spatial indexing is employed, it is necessary to check each line segment of 

every line against each line segment of every other line, since each line must be regarded 

as the neighbour of every other line. This can lead to unsatisfactory processing times, 

even for relatively small data sets. However, if a spatial index is used, the number of 

neighbours per line, and hence the number of intersection and co-incidence tests 

needing to be performed, can be greatly reduced. This can be brought about by defining 

a spatial window based on the line segment currently being processed. It now follows 

that only those lines which intersect this window need be regarded as neighbours of the 
line segment. 

A1.3 Re-establishing Topological Integrity. 

It has been shown that the removal of points from a line or collection of lines can result 
in a loss of topological integrity. Methods have also been described for detecting such 

errors. There now follows a discussion as to how these errors can be resolved. 

In each of the types of error described, the error has occurred as a result of removing 
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one or more points from the original line or lines. The error correction technique 

adopted here is therefore to replace one or more of the discarded points back into its 

original line, in such a way as to restore topological integrity. An alternative approach 
would be to retain only those points selected by the Douglas Peucker algorithm, but 

distorting the x and y coordinates of certain of these points in a fashion such as to 

result in a topologically correct data set. Muller [83] uses a method similar to this. The 

former method is more applicable to this work as it is important to retain consistency 
between the levels of the multi-scale database. 

4 
304 5 20 0h9 

Figure A1.8 - Generalisation has resulted in self-crossing. 

The self-crossing scenario will be dealt with first, and in detail. The other three 

situations can each be dealt with in a similar way to this. The situation is that a line L, 

consisting say of n points and (n-1) line segments, has been generalised, resulting in a 
generalised line L9 consisting of (n-m) points and (n-m-1) line segments (Figure A1.8). 
Each of the (n-m-1) line segments, defined (a, b), may, or may not, have discarded 

points associated with it. For each segment, the associated discarded points, D, will be 

those points which lie between the endpoints, a and b, in the original line description. It 
is found that two of the line segments, Sl and S2, of the generalised line intersect each 
other, resulting in a loss of topological integrity. A method for resolving this situation is 
therefore needed. 

0 
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Figure A1.9 - Restoring spatial integrity by arbitrarily choosing points for 

reinsertion. (a) Self-crossing after simplification. (b) Point 2 added between point 1 and 

point 6, does not resolve spatial conflict. (c) Point 10 added between point 9 and point 11, 

does not resolve spatial conflict. (d) Point 4 added between point 2 and point 6, spatial 
integrity restored. 

The simplest approach is to reintroduce all discarded points, D, 1 and D`2, resulting in a 

number of new, non-intersecting line segments. A second approach could be to 

reintroduce a single point, chosen arbitrarily from Ds1 or Ds2, thus replacing one of the 

original line segments with two new segments, S3 and S4, each with their own list of 

associated points. S3 and S4 are now each checked in turn for intersection with the 

remaining original line segment. If an intersection is found, the process of choosing and 
inserting a point is repeated and continues in a recursive manner until no intersection is 

found (Figure A1.9). This is the approach adopted in the line generalisation algorithms 

used in this thesis. 

Note that any new line segments introduced as a result of applying either of these 

processes may intersect other line segments of Lg, other than those derived from S1 and 
S21 and will have to be checked accordingly. This process of introducing new error into 

the line representation is referred to as error propagation. 
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Figure A1.10 -A selection of hand generated occurrences of self-crossing. 

Each of these methods will solve the problem of spatial conflict, but would seem to be 

far from optimal with regards the number of discarded points which are reintroduced. 
A more sensible approach could be to modify the second method, by applying certain 

criteria to govern the selection of the point that is reintroduced at each stage. This 

might result in restoring the spatial integrity of the line with fewer points having to be 

reintroduced. There now follows a number of suggestions as to how a point might be 

selected for reinsertion. These suggestions have not as yet been tested. 

One obvious criteria would be to reintroduce that point with the greatest scale 

significance (as decided upon by the Douglas Peucker algorithm). An exhaustive 
technique would be to predict the effect of reintroducing each of the points. This could 
be achieved by temporarily reinserting each point, in turn, into the line, assessing its 

effect, then removing it. The point which gives the best result can then permanently 

reinserted. The result of inserting a point is quantified in terms of whether or not it 

solves the problem of intersection, the points significance in describing the line and the 

number of propagation errors introduced as a result. This approachT would appear to 
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be very efficient in terms of number of points reinserted, but might suffer in being time 

consuming. 
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Figure A1.11- Spatial integrity restored in each case by guessing at the best point to 
insert. 

A compromise might be reached by introducing a rule by which the best point to 

reinsert can be guessed at. From studying a number of hand generated situations (Figure 
A1.10), it is noticed that in most cases when two line segments intersect, one of these 

segments, S, will also intersect at least one other segment. It would appear that the best 

approach to reinserting points would be to reinsert a point into the line segment S first. 

It also follows that this point will be the point from Ds with greatest scale significance. 
If both line segments intersect no other segment, a point is chosen purely according to 

scale significance. In practise, each line segment may intersect any number of line 

segments. The policy adopted is to reintroduce a point to that segment which intersects 

most other line segments. If each line segment intersects the same number of other line 

segments, the point is chosen according to scale significance. This method is illustrated 

in Figure A1.11. 
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This technique can easily be adapted to cater for the solution of self-coincidence, 
overlapping polygons and flat polygons. A single algorithm, 
RESTORE_SPATIAL_INTEGRITY, is presented in Figure A1.12. The algorithm 
describes a process by which a set of line data (whether the lines represent polygons or 

not does not matter) is examined for spatial conflict and has its spatial integrity 

restored whenever a conflict is found to have occurred. 
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Procedure RESTORE-SPATIAL-INTEGRITY 

For each line Li 
Get neighbours. 
For each neighbour L2 

Put all line segments of Ll onto EDGE STACK_l. 
Put all line segments of L2 onto EDGE_STACK_2. 
Do while EDGE-STACK-1 not empty 

Take line segment El (A1, A2) from top of EDGE_STACK_1. 
Do while EDGE_STACK_2 not empty 

Take line segment E2 (B1, B2) from top of EDGE-STACK-2. 
If (El * E2), then 

If (edges_intersect(E1, E2) or (edges_coincident(E1, E2)), then 
Calculate Il, the number of edges of L2 intersected by or 
coincident with El. 
Calculate 12, the number of edges of Ll intersected by or 
coincident with E2. 
If (Il > 12), then 

Get D1, the currently unused point with greatest 
significance. 
Replace edge El in Ll with edges N1(A1, D1) and N2 
(D2, A2). 

Else 
If (12 > I1), then 

Get D2, the currently unused point with greatest 
significance. 
Replace edge E2 in L2 with edges N1(B1, D2) and N2 
(D2, B2). 

Else 
Get D1. 
Get D2. 
If (distance D1 > distance D2), then 

Replace edge El in Ll with edges N1 (A1, D1) and 
N2 (D1, A2). 

Else 
Replace edge E2 in L2 with edges Ni (B1, D2) and 
N2 (D2, B2). 

Endif. 
Endif. 

Endif. 
Endif. 

Endif. 
Endwhile. 

Endwhile. 
Endfor. 

Endfor. 

Endprocedure. 

Figure A. 12 -A procedure to restore spatial integrity. 
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Core Library Functions 

This appendix does not list all the functions held in the core libraries. Those listed 
here have been chosen because of their importance to database creation and query 
processing. 
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A2.1 Data_Retrieval Library. 
This library contains low-level read/write functions which interact directly with the 
ORACLE or ISAM database. For each of the functions listed, which read data from the 

database, there is a corresponding write function in the actual implementation. 

function get_values (point_id, level used, x_value, y value, z_value) 
Returns a record from the Oracle Point Table (or ISAM Point File) for a 
given point_id. 

function get-line-record (line_id, level, point ids, seq_nos) 
Returns a record from the appropriate Line Feature Table for a given 
(line_id, level) pair. 

function get-polygon-record (polygon-id, line ids) 
Returns a record form the Polygon Table for a given polygon_id. 

function get object_record (object-id, object desc, class ids, point_ids, 
line_ids, polygon-ids) 
Returns a record from the Object Table for a given object_id. 

function get_triangle_record (tri_id, level, geom id) 
Returns a record from the appropriate Triangle Table for a given (tri_id, 
level) pair. 

function get_internal_record (geom_id, level, verb id, vert2_id, 
vert3_id, adjacentl_id, adjacent2_id, adjacent3 id) 
Returns a record from the appropriate Internal Table for a given (geom_id, 
level) pair. 

function get_boundary_record (geom_id, level, adjacentl id, 

adjacent2_id, adjacent3 id) 
Returns a record from the appropriate Boundary Table for a given 
(geom_id, level) pair. 

function get-info-details (object_grid_x, object-grid-y, triangle_grid_x, 
triangle_grid_y, lateral error, vertical_error) 
Returns details from the Information Table. 

function get-triangle-grid-record (x coord, y_coord, level, triangle ids) 
Returns a record from the appropriate Triangle Grid Table for agiven 
coordinate pair and level. 
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function get-object-grid-record (x_coord, y_coord, level, object ids) 
Returns a record from the appropriate Object Grid Table for a given 
coordinate pair and level. 

A2.2 Data_Transfer Library. 
This library contains high-level read/wite functions which interact with the 
Data_Retrieval library. 

funtion get_triangle_details (tri_id, level, vi, v2, v3, a1, a2, a3) 
Returns the geometry and adjaceny information for a given tri_id at a 
specified level of detail. 

function get_line_details (line_id, level, point_ids) 
Returns a list of point ids which reference the points that define a line at a 
particular level of detail. 

function get objects (x1, yl, x2, y2, level, object list) 
Returns a list of object_ids which reference all objects that intersect a query 
window (a rectangle defined by x1, yl, x2, y2) at a specified level of 
detail. 

function get triangles (xl, yl, x2, y2, level, triangle_list) 
Returns a list of triangle-ids which reference all triangles that intersect a 
query window (a rectangle defined by x1, yl, x2, y2) at a specified level of 
detail. 

A2.3 Geometry_Library. 

This library contains the geometrical routines used during database creation and query 
processing. 

function point-in-triangle (point-id, tri_id, flag) 
Sets flag to 0 if point outside triangle, 1 if point is inside triangle, 2 if point 
lies on an edge of triangle or 3 if point coincides with a triangle vertex. 

function point_in_polygon (point-id, polygon-id, flag) 
Sets flag to 0 if point outside polygon, 1 if point is inside polygon, 2 if 
point lies on an edge of polygon or 3 if point coincides with a polygon 
vertex. 
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function line_segment_intersect (x1, y1, x2, y2, x3, y3, x4, y4, flag, x, y) 
Tests if line segment (xl, yl), (x2, y2) intersects line segment (x3, y3), (x4, 

y4). Flag set to 1 if segments intersect, 0 otherwise. Also returns (x, y) 
value of point of intersection (when appropriate). 

function calculate_centroid (tri_id, x, y) 
Calculate the centroid of a triangle. 

function calculate_circumcentre (tri_id, x, y) 
Calculate the circumcentre of a triangle. 

A2.4 Triangulation Library. 
This library contains a number of the basic functions required to perform a constrained 
Delaunay triangulation of a set of points and constraining edges. 

function calculate-convex-hull (point-ids, convex-hull) 
Calulates the convex hull of a set of points. 

function triangulate_convex_polygon (convex-polygon, triangle-ids) 
Delaunay triangulates a convex polygon. 

function triangulate-polygon (polygon, triangle-ids) 
Delaunay triangulates a polygon. 

function insert-point (point_id, triangle 
- 

ids) 
Inserts a point into an existing triangulation. 

function insert-edge (v1, v2, triangle-ids) 

Inserts an edge (vl, v2) into an existing triangulation. 

A2.5 Output Library. 

This library contains a number of high-level computer graphics output primitives which 
interact with UNIRAS (MTSD 1.0) or PHIGS (MTSD 2.0 and MGD). 

function draw-object-empty (object id) 
Draws an object. 

function draw_object_shaded (object_id, colour) 
Draws a shaded object. 
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function draw. 
-polygon-empty 

(polygon-id) 
Draws a polygon. 

function draw-polygon-shaded (polygon-id, colour) 
Draws a shaded polygon. 

function draw_line(line_id) 
Draws a line. 

function plot_point (point_id) 
Plots a point. 

function draw_triangle_empty (triangle_id) 
Draws a triangle. 

function draw_triangle_shaded (triangle id, colour) 
Draws a shaded triangle. 
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Published Papers 

These papers make up the published work relating to the thesis. It should be noted 
that the results in the thesis represent a more up to date account of the research 
than the work presented in these papers. In the instance of any inconsistency 
between the work documented in the papers and that documented in the thesis, the 
thesis should be taken as being correct. 
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MULTISCALE SPATIAL MODELLING WITH 
TRIANGULATED SURFACES 

Christopher B. Jones, J. Mirk Ware and Geraint U. Bundy 

Department of Computer Studies 
The Polytechnic of Wales 

Pontypridd 
Mid Glamorgan, CF37 I DL, UK 

email: cbjones@uk. ac. pow. genvax 

Abstract 

Triangulated surfaces provide a means of integrating linear and 
polygonal features within topographic and geological models. The approach 
is versatile in that it can be applied to planar 2D maps, terrain surfaces and 
fully 3D geological models. Hierarchical triangulated data structures can 
represent surfaces at multiple resolutions and can be combined with a 
hierarchical representation of the point, line and polygon features that 
constrain the triangulation. Triangulations can also be used to assist in the 
detection and resolution of spatial conflicts resulting from generalisation 
operators that involve enlargement and symbolisation. 

Introduction 

Despite the very widespread use of GIS technology, facilities for 
automatically generating spatial models and maps at different scales remain 
remarkably poor. Satisfactory execution of automatic scale change, and the 
process of generalisation which it entails, depends partly upon the 
incorporation within GIS of the human knowledge involved in 
generalisation (Weibel, 1991). It also depends upon the development of 
computer representations and computer techniques which can emulate the 
visual processing which is implicit in the human knowledge concerned with 
generalisation. This paper examines the use of triangulated surfaces, 
primarily as it framework for building multiple scale topographic 
databases, but also, more speculatively, as a representation which has 
potential for assisting generalisation procedures which can benefit from a 
continuous representation of the map space. 

In the context of geographical information systems, the benefits of 
triangulations for, representing terrain surfaces in the form of triangulated 
irregular networks (TIN) hive= Iq lö been recognised (e. g. Peucker et al, 
1978). In particular they preserve spatial data at their original locational 
accuracy, unlike raster or grid models which often result in a loss of 
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locational resolution. The structure of a triangulated surface can also be 
used to represent local spatial relationships, through vertex, edge and 
triangle adjacency data. Their broader potential for providing topologically 
consistent representations of maps, in the form of cell graphs or simplicial 
complexes has been discussed by Frank and Kuhn (1986). This latter view 
of triangulations appears relevant to the solution of map generalisation 
problems in that it is desirable to retain the topological integrity of map 
data while applying simplification and symbolisation operators which are 
liable to jeopardise it due to changes in shape and size of objects. An 
example of a technique which uses triangulation explicitly to generalise 
polygons, by generating their skeleton, has been described by 
Chithambaram et al (1991). Frank and Kuhn drew attention to the value of 
triangulations in representing linear features as chains of edges, in addition 
to their conventional use in representing terrain defined by point 
elevations. They also referred to the benefits of creating hierarchical 
triangulations in which objects could be described at different levels of 
aggregation of their components. 

There have been several research efforts with the objective of creating 
multiresolution hierarchical triangulations. Examples can be found in 
Gomez and Guzman (1979). De Floriani (1989), De Floriani and Puppo 
(1988), and Scarlatos and Pavlidis (1991). Hierarchical triangulated data 
structures are particularly relevant to representing the aspects of 
generalisation which involve gradual changes in spatial form. Provided the 
changes can be predetermined and can be described by a progressive 
reduction of the original geometric components, multiresolution 
hierarchical data structures may provide efficient access to specified levels 
of detail by traversing them to the appropriate depth. 

The hierarchical triangulation schemes referred to can be applied to 
terrain surfaces in which the level of detail is defined with respect to a 
vertical error corresponding to the difference between a simplified surface 
and the original detailed surface. Comparable schemes for multiresolution 
representation of linear features have also been developed but the error 
refers to lateral or horizontal distances. Examples are strip trees (Ballard, 
1981) and the multiscale line tree (Jones and Abraham, 1986,1987). 

The following sections of this paper are concerned with the 
development of a multiresolution database which integrates a hierarchical 
triangulation scheme based on the constrained Delaunay pyramid (De 
Floriani and Puppo 1988, De Floriani 1989) with a hierarchical line 
representation based on the multiscale line tree. We then discuss the issues 
which arise in extending this topographic surface modelling scheme to a 
multiresolution three dimensional geological model. Finally we consider 
briefly how a two dimensional triangulation can be used to assist 
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generalisation procedures involving object symbolisation and displacement. 

A Multiresolution Topographic Surface Database 

The objective in designing a multiresolution topographic surface 
database was to provide a spatial model which combined point, linear and 
areal topographic features with a terrain surface, in a manner which 
enabled efficient retrieval of different scale representations. In particular it 
was regarded as desirable to minimise duplication of data such that spatial 
data common to different levels of detail were only stored once. In 
combining ideas from the constrained Delaunay pyramid and the multiscale 
line tree, the approach adopted here categorises vertices according to their 
scale significance. The terrain surface and the topographic features 
embedded within it are then represented at varying levels of detail by 
describing triangulations and surface features in terms of references to the 
component vertices, which are stored separately. 

The Delaunay pyramid, in its original form, consists of a hierarchy of 
triangulation definitions, each level of which contains progressively greater 
detail. There are three types of triangle which can occur in a particular 
level of triangulation - internal, boundary and external. An internal 
triangle consists of references to three vertices and three adjacent triangles. 
A boundary triangle consists of three references to adjacent triangles and a 
reference to a previously defined, higher level, internal triangle (the 
vertices of which are the same as those of the boundary triangle). An 
external triangle simply consists of a reference to a previously defined, 
higher level. internal triangle with which it is identical. Each triangle 
within a level also references those triangles at the next more detailed 
lower level which intersect it. This assists hierarchical spatial search within 
a Delaunay pyramid to determine which triangle a given point lies inside. 

The constrain ed Delauna)" pyramid (cdp) modifies the original data 
structure by allowing, insertion of chains of edges belonging to surface 
features. Retention of these edges within the triangulation as edges of 
triangles results in local violation of the criteria for Delaunay triangulation. 
In doing so. the surface more accurately models the real world surface by 
ensuring that it conforms to known structural features. The possible failure 
of Delaunay triangulation to model the real surface was one of the 
motivations for the multiresolution scheme of Scarlatos and Pavlidis 
(1991). The cdp differs from the latter however in ensuring that triangle 
edges conform to specified structural features and in using Delaunay 
criteria to model those parts of the surface for which no other structural 
information is available. 

In the Delaunay pyramid, vertices are allocated to successive levels of 
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the hierarchy on the basis of their reduction in the elevation error at the 
location of the vertex, with respect to the original fully defined surface. 
Thus, starting at an approximation to the original surface, the vertically 
most distant vertices are progressively inserted in the triangulation at that 
level until a preset tolerance is reached, i. e. until no uninserted vertex is 
further from the current surface approximation than the tolerance distance 
for that level. 

When constraining the surface with linear features, the vertical error 
criterion for vertex insertion does not provide adequate control over the 
degree of generalisation of linear features at a particular level, since it 
takes no account of lateral variation in form. In practice, the inserted linear 
feature vertices may have been derived from a two dimensional planar map 
and could not therefore contribute to a reduction of surface error, since 
their elevations were only obtained by interpolating them within the 
original terrain surface. To ensure that linear features are represented at an 
appropriate degree of generalisation at each level, it is necessary to 
introduce the concept of lateral tolerance, which is a measure of the 2D 
cartographic generalisation of these features. In the line generalisation tree 
(Jones 1984, Jones and Abraham 1986) and its spatially indexed variant, the 
multiscale line tree, linear feature vertices are classified according to shape 
significance by means of the Douglas and Peucker (1973) algorithm. This 
uses a tolerance value based on the laterally perpendicutar distance of 
vertices from an approximating line passing through a subset of the 
original vertices. 

In our modification of the cdp, the Multiresolution Topographic 
Surface Database (MTSD), each level of the hierarchy is defined by both a 
vertical distance tolerance and a lateral distance tolerance. Thus only those 
vertices of linear features which approximate the line to within the preset 
lateral tolerance are inserted as constrained edges within a particular level. 
The constrained edge insertion procedure is similar to that of De Floriani 
and Puppo, though it differs in allowing the insertion of intersecting edges, 
by creating a new vertex at the intersection. 

The MTSD describes primitive surface features in terms of points, lines 
and polygons. Polygons are defined by lists of lines, while lines are defined 
by lists of vertices. Objects of a particular class are defined by the polygon, 
line and point features which constitute them. Each level of the MTSD is 
represented by tables which define the objects and the polygon, line and 
point features which are relevant to that level. In the case of the linear 
feature tables, each record consists of data comparable to that used in the 
line generalisation tree. Thus linear feature records contain a line feature 
identifier, the identity of the highest level at which the line appears and a 
list of vertex identifiers, each of which is accompanied by left and right 
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control values. The control values record the numbers of vertices to be 
inserted on either side of the referenced vertex at the next level down the 
hierarchy. Line reconstruction is performed by means of a recursive 
procedure described in Jones and Abraham (1986). 

Spatial access to the MTSD is facilitated by the use of a pyramidal 
structure consisting of regular grids for each level of the database. The cell 
size of the grids differs between levels according to the density of objects 
and triangles. Each cell references a list of the objects or triangles which 
intersect it. The use of the pyramidal grid spatial indexing scheme is 
comparable to that employed in the multiscale line tree which was 
implemented both with quadtrees and with a regular pyramid index. This 
approach to spatial indexing diverges from the Delaunay pyramid design of 
De Floriani, which employs hierarchical links between pyramid levels to 
guide spatial search. The regular grids provide a simple method of object 
and triangle indexing. Their use in our experimental database is justified by 
simplicity rather than optimality. 

The MTSD has been implemented with a relational database 
management system. The design does not conform fully to the relational 
model in that it makes use of variable length fields for storing lists of data 
items. Thus the linear feature tables store lists of vertex identifiers and 
control values, the polygon feature tables store lists of linear feature 
identifiers, the object tables store lists of point, line and polygon identifiers, 
and the object grid and the triangle grid tables store lists of objects and 
triangles respectively. 

A major component of the storage space in the MTSD is that of the 
triangulation tables for each level of the database. Having constructed the 
triangulations and inserted the surface features at the various levels of 
resolution. it remains an option to store only the identifiers of the 
constituent vertices of each level. along with the point, line polygon and 
object features which map onto them. When a surface is required at a 
particular level of detail it may then be retrieved by obtaining the relevant 
vertices and executing a constrained Delaunay triangulation algorithm. 
Because reconstruction of the surface does not require the original tests for 
surface error, a more efficient algorithm may be used, such as that 
described by Chew (1987). Provided that the spatial window was expanded 
sufficiently to model the boundary of the surface, it could be reproduced in 
a form identical to when the database was constructed. This method is 
termed implicit triangulation and has been described by Kidner and Jones 
(1991). 

A3-6 



www.manaraa.com

Appendix 3 Published Papers 

Three Dimensional Object Modelling 

Multiresolution triangulated surface data structures have potential for 
representing fully three dimensional structures of the sort required in 

geological modelling. The construction of triangulated surfaces bounding 
3D polyhedra is, however; complicated by the fact that, unlike normal 
terrain, geological surfaces cannot be assumed to be single valued when 
projected onto a plane. In general, they may be of any orientation and may 
be overfolded, at least relative to the horizontal plane. 

Procedures for Delaunay triangulation, in 2D and in 3D, of arbitrarily 
oriented polyhedral surfaces have been described by Boissonnat (1984). In 
the case of the 2D triangulation technique. vertices are projected onto local 
tangential planes, on which triangulation then takes place. The vertices 
which are triangulated belong to a neighbourhood which must be assumed 
to represent a surface which is single valued relative to the local tangential 
plane (which itself is found by a least squares fit). Working with subsurface 
geological data, this assumption would not always hold true, since data may 
be sparsely distributed and folding or reverse faulting could have occurred. 
However, if information were available from borehole or seismic data 
about the orientation of the boundary at each vertex, it would be possible. to 
select vertices in order to improve the chances of working with a single 
valued surface. It might also be possible to introduce constraints relating to 
connectivity between vertices, based on geological interpretations of cross 
sections obtained from borehole and seismic data. 

The 3D volumetric approach to Delaunay triangulation described by 
Boissonnat finds a surface represented by a set of vertices by determining 
the boundary of a 3D tessellation, based on tetrahedra. Initially the 
volumetric tessellation occupies the entire convex hull of the vertices, after 
which tetrahedra occupying what are assumed to be concavities of the 
surface are progressively eliminnated. Provided the original vertices have 
been obtained by a relatively regular and dense sampling of the surface of 
an object, the resulting triangulated surface may be expected to correspond 
topologically to the real surface. As with the 2D triangulation scheme 
referred to above, the Delaunay criteria for triangulation cannot be 
guaranteed to reproduce the form of the real surface when using irregularly sampled vertices, particularly when combined with complex 
structures. It may be envisaged that Delaunay criteria should only be 
applied when no other constraining data are available. 

Modification of the multiresolution database for topographic surfaces to 
incorporate 3D surfaces will depend not only upon finding an appropriate 
surface triangulation procedure but also upon finding a method of 
classifying vertices according to their contribution to the shape of the 
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surface. Faugeras et al (1984) have described a technique which does this 
by retriangulating an initial higher resolution surface to within a given 
error. The technique resembles the Douglas and Peucker algorithm for line 
simplification, in that it uses a recursive procedure to determine points 
which are most distant relative to a given approximation. 

Whereas, in the Douglas and Peucker algorithm, distances are measured 
perpendicular to an approximating line (starting with the line joining the 
start and the end points), in the surface based method, distances are 
measured from the plane of an approximating triangle. An initial triangle 
segments the vertices into two halves, on the assumption that the vertices 
represent a closed volume. The initial triangle's component vertices are 
then retriangulated with the two vertices selected as most distant on both 
sides of the plane. Using the vertices in the respective initial partitions, the 
most distant vertices from each of these constituent triangles are then 
found, subject to a constraint which confines the search to the connected 
neighbourhood of each triangle. The procedure continues recursively until 
no vertex is further from its parent triangle than the tolerance distance. 
This procedure would preserve the edges of each triangle that was 
subdivided, resulting in the possibility of a poor representation of the 
surface. Faugeras et al alleviate this problem by breaking common edges at 
an intermediate vertex and retrianoulatin , after each stage of the recursion 
process. 

Triangulated Models and Cartographic Generalisation 

The MTSD previously described provides a framework for accessing 
geographical information at multiple levels of 4generalisation. In describing 
the data in the context of constrained trian ulated surfaces however, it 
provides a tessellated representation of space which may be useful in 
carrying out geiieralisation procedures used to derive representations at 
different scales. 

An important aspect of generalisation is the competition for map space 
which results from the symbolisation of objects such that they occupy more 
space than their true scale representation. As scale decreases the 
symbolisation process dictates that object representations must be 
simplified, moved from their true scale location, or eliminated entirely 
from the map. Generalisation of individual objects within a map must be 
done with regard to the integrity of adjacent map objects. The triangulated 
model, or simplicial complex, is attractive in this respect, in that all space 
on the map is explicitly accounted for. Furthermore, the triangular 
topology can serve to record adjacencies between neighbouring objects. 
Thus if all space is triangulated with disjoint (i. e. non-overlapping) 
triangles, the edges emanating from the boundary of an object will be 
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connected to the nearest objects. 

If generalisation operators are applied to individual objects within a 
triangulated space, any adverse effects of the operations can easily be 
monitored, by testing the integrity of the triangulation. Whenever an 
overlap occurs, characterised by the fact that a vertex of one object moves 
across the boundary of another object, the triangle which connects the 
originally adjacent objects will become inverted. This situation is 
distinguished by a reversal in the rotational order of the triangle's 
component vertices. Thus if initially ordered clockwise, they will become 
anticlockwise on inversion. 

a b 

C d 

Figure 1. Enlargement and displacement can result in loss of integrity of a 
triangulation, indicated by inverted triangles (see text). 

w 
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The presence of inverted triangles provides a computationally simple 
means of detecting potential conflict, actual overlaps and, in general, 
topological inconsistencies due to an object moving across another object. 
Identification of inversions can be used both to trigger operations such as 
displacement, shrinkage and object deletion, and to guide the way such 
operations are executed. Figure 1 illustrates a simple scenario in which an 
initially consistent triangulation (a) is violated by the expansion of the 
rectangular object on the right (b). An attempt to resolve the conflict by 
moving the transgressed object leftwards (c) results in a further overlap 
with the group of objects on the left. Resolution is achieved by moving this 
group leftwards (d). The way in which conflict is resolved depends upon 
the relative importance of the objects concerned. Research on the 
applicability of triangulations to generalisation is in progress and results 
will be published elsewhere. Control of the generalisation operators 
according to context and purpose of the map will be achieved by means of a 
frame-based knowledge representation and reasoning system. 

Summary 

A multiscale topographic surface database (MTSD), which integrates 
point, line and polygon features within a triangulated terrain model has 
been implemented. The hierarchical constrained triangulation scheme used 
for surface description is being extended to enable the representation of 
three dimensional geological objects bounded by multiresolution 
triangulated surface patches. The technique of constrained Delaunay 
triangulation is also being used for the purpose of generalising 2D maps. A 
data structure which records the topology of the triangulation facilitates 
the detection of spatial conflicts resulting from generalisation operators, 
and their subsequent resolution in a Uu, tnnel which maintains the topological 
integrity of the map. The MTSD design and the related generalisation 
techniques are being incorporated within a deductive database system, 
summarised in Jones (199I ), for maintaining multiple representations of 
geographical information. 
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A multiresolution topographic surface database 

J. MARK WARE and CHRISTOPHER B. JONES 
Department of Computer Studies, The University of Glamorgan, Pontypridd, 
Mid Glamorgan, Wales, UK 

Abstract. Multiresolution data structures provide a means of retrieving geograph- 
ical features from a database at levels of detail which are adaptable to different scales 
of representation. A database design is presented which integrates multi-scale 
storage of point, linear and polygonal features, based on the line generalization tree, 
with a multi-scale surface model based on the Delaunay pyramid. The constituent 
vertices of topologically-structured geographical features are thus distributed 
between the triangulated levels of a Delaunay pyramid in which triangle edges are 
constrained to follow those features at differing degrees of generalization. Efficient 
locational access is achieved by imposing a spatial index on each level of the 
pyramid. 

1. Introduction 
Many existing geographical information systems (GIS) may be regarded as limited 

by the fact that the spatial models they employ represent the Earth's surface in only two 
dimensions and only at a fixed level of detail. When models of the terrain surface are 
included in GIS they are typically present as an independent representation consisting 
of an array of elevation values or a triangulated network of irregularly distributed 

elevations. For several types of spatial analysis, such as slope studies and visibility 
determination, this separate representation may be satisfactory and, particularly for 

raster-oriented analysis, very convenient. However, with the increasing use of GIS for 

urban and regional planning, and in the geosciences, it may be envisaged that the 
ground model could be more conveniently regarded as an integral part of a 
topographic database rather than as a separate layer. For many such applications it 

should be possible to visualize the model at different levels of detail, according to the 
areal extent, or scale, of the region of interest. Thus it is desirable to be able to treat 
urban infrastructure and natural features as embedded within a 2.5-D surface which 
can be retrieved at varying levels of detail. This would facilitate multi-scale 2.5-D 

visualization of existing and planned environments, and the interpretation and analysis 
of geoscientific data. 

Since accurate representation of topographic features requires that they be 
locatable at arbitrary coordinates, there is considerable advantage in using a TIN 
surface model (Peucker et al. 1978), rather than a grid which would limit the locational 

resolution. A further advantage of triangulated surfaces is that they lend themselves 
both to a multi-resolution representation of the ground surface and to the incorpor- 
ation of vector models of topographic features. A data structure which provides multi- 
resolution access to a triangulated surface is the Delaunay pyramid (Dc Floriani 1989). 
De Floriani and Puppo (1988) have shown how the construction of a multi-resolution 
trangulation can be constrained by linear features which become included as triangle 
boundaries. 

This article presents the results of a continuing research project with the aim of 
designing a multi-scale database which integrates vector-defined geographical features 
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with a digital elevation model. The data structures used in this database combine 
aspects of two-dimensional multi-scale database design (Jones 1984, Jones and 
Abraham 1986 and 1987) with a constrained Delaunay pyramid. In the following 
sections, the multi-scale storage of 2-D linear features is discussed briefly before 
summarizing the characteristics of De Floriani and Puppo's constrained Delaunay 
pyramid. Our modification of the latter is then described with reference to the issues of 
including generalized features and spatial indexing. An algorithm for building the data 
structures is also described, before presenting an implementation which uses -a 
relational database management system. Finally, some implementation issues are 
discussed and future directions for research indicated. 

2. Multi-scale access of linear features 
Access to linear features at variable scales can be achieved either by storing multiple 

versions of the linear feature at predetermined scales; by storing a single large-scale 

version from which smaller scales are derived using generalization algorithms; or by 

means of a multiresolution data structure specifically adapted to retrieving variable 
degrees of detail. Storage of multiple versions results in significant storage overheads 
owing to duplication of the constituent vertices between different versions. Retrieval 
from a single version could incur major processing overheads when deriving a 
representation of much smaller scale than the original linear feature. Multiresolution 
data structures represent a compromise between the two approaches. 

The line generalization tree (Jones 1984, Jones and Abraham 1987), which can be 
thought of as a relative of the strip tree (Ballard 1981), is an example of a 
multiresolution data structure in which vertex duplication is minimized, while 
providing selective access to those vertices required for a particular scale represen- 
tation. It achieves this by firstly assigning to each point a level of scale significance using 
a line generalization algorithm and then storing that point at its corresponding level in 
the tree. Therefore, at each level, only those points which are intermediate to points at 
the previous level in the tree are stored. The order of points within a linear feature can 
be maintained by either associating with each point a left and right control value which 
records the number of adjacent intermediate points at the next lower level or by storing 
a sequence number for each point which records its position in the original line. 
Although this method introduces additional data in the form of either the control 
values or the sequence numbers, it significantly reduces the data overheads of mutliple 
line storage (Abraham 1988). Jones and Abraham (1987) also describe a strategy for 
spatially segmenting each scale-specific level in a data-adaptive manner using quadtree 
cells, the resulting structure being termed a multi-scale line tree. 

A data structure with close similarities to the line generalization tree and the strip 
tree is the BLG-tree (van Oosterom and van den Bos 1989, van Oosterom 1990). This 
is a binary tree in which each node stores a line segment accompanied by the most 
distant intermediate point of the original curve, its distance, and pointers to the two line 
segments defined by the current start and end points and the intermediate point. The 
BLG-tree differs in particular from the line generalization tree in that the latter employs 
discrete levels of generalization. For the purpose of combining generalized linear 
features with the constrained Delaunay pyramid, the use of the line generalization tree 
appears the more appropriate since the pyramid structure also employs discrete levels 
of accuracy (or generalization). It is noted that, although originally designed for storing 
linear features, the line generalization tree is also capable of storing polygonal features. 
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3. The constrained Delaunay pyramid-a hierarchical terrain model 
Hierarchical surface models, such as those described by Gomez and Guzman 

(1979), Barrera and Vazques (1984), Chen and Tobler (1986) and De Floriani et al. 
(1984), provide representation of a surface at different resolutions. These models are 
deficient in that they produce approximations which are either numerically inaccurate 
because of the elongated shape of their constituent triangles or are well-suited only to 
regularly sampled data (De Floriani 1989). The Delaunay pyramid (De Floriani 1989) is 
a hierarchical multiresolution surface model which overcomes these problems. It uses a 
data structure made up from a number of Delaunay triangulations, each approximat- 
ing the true surface to a different level of accuracy, linked together in increasing order of 
accuracy in a tree-like manner (figure 1). 

The pyramid is built from a set of points S by firstly constructing an initial 
constrained Delaunay triangulation, which would include those points of S which 
either define the domain boundary or are the most important surface-specific points 
(peak, pits and passes) and lines (ridges and valleys). Each triangle is defined by its three 
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Figure 1. An example of a3 level Delaunay Pyramid. Triangles of type 0 correspond to internal 
triangles, triangles of type 1 to boundary triangles and those of type 2 to external triangles. 
Venice and adjacency information of boundary and external triangles is found by 
examining the parent triangle. 
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vertices and its three adjacent triangles. Pyramid construction proceeds by taking an 
additional point from the set S, that point being the one furthest away from the 
approximated surface, and adding it to the surface, which is then re-triangulated (figure 
2). It is important to note that, owing to the circle criterion in the Delaunay 
triangulation, only those triangles whose circumcircles contain the new point will have 
to be re-triangulated. The process of adding points and re-triangulating is repeated 
until a preset error tolerance is reached for that level. The next level, initially identical to 
the first level, is then created. Further points are added from S until the error tolerance 
for that level is reached. New levels continue to be added to the pyramid until the most 
detailed level has been created to the required accuracy. 

It is likely that some of the triangles at a particular level will be completely retained 
in the next lower level or will differ only in regard to their adjacent triangles. The 
Delaunay pyramid overcomes data duplication by storing triangles as either internal, 
boundary or external. An internal triangle is defined by its vertices and its adjacent 
triangles. Boundary triangles will consist of a pointer to a parent triangle, from which 
its vertices will be obtained, and a reference to its three new adjacent triangles. An 
external triangle is completely described by a pointer to a higher level triangle. Each 
triangle in the Delaunay pyramid also maintains a pointer to those triangles contained 
in the next lower level which intersect it. This provides some direction to spatial search 
by allowing the pyramid to be traversed quickly once possible triangles have been 
identified at the top level. 

Scarlatos and Pavlidis (1991) point out that the Delaunay pyramid, along with all 
terrain models based solely on Delaunay triangulation, tends to ignore the third 
dimension, and may therefore produce edges that contradict the topology of the actual 
surface. They attempt to overcome this problem by proposing a non-Delaunay 
triangulation scheme, termed adaptive hierarchical triangulation, which produces a 
multiresolution terrain model that adapts itself to surface characteristics. However, this 
method does not appear to be suited to the inclusion of topographic (non-elevation) 
feature data in the model. To counter the apparent inadequacy of the Delaunay 
pyramid, De Floriani and Puppo (1988) have proposed a dynamic, easy-to-code 
algorithm to produce a constrained Delaunay pyramid (figure 3). The ability to 
introduce constraints into a pyramid ensures that specific linear features, such as 
valleys and ridges, can be retained as connected edges within each level of the pyramid. 
In principle, this mechanism for constraining the triangulation facilitates the inclusion 
within it of any point, linear or polygonal feature, whether physical or cultural. 
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4. A hierarchical model for both feature and terrain data 
The model presented here, building upon the line generalization tree and 

constrained Delaunay pyramid, introduces a spatial data access scheme suited to the 

efficient storage and retrieval of terrain and topographical feature data at multiple 
scales. Vertices, or points, representing point, line and polygonal features, are merged 
with those points defining the surface to form a single data set. These points, each of 
which is allocated a unique identifier, are then used to construct a constrained 
Delaunay pyramid. 

A unique aspect of the work is the ability to include topologically-structured 
features, such as pylons (point), railways (line) and county borders (polygonal) within 
the pyramid. In the case of line and polygonal features, these occur as chains of 
constrained edges within the pyramid. These are in addition to those surface features 

necessary to characterize the shape of the surface, such as ridges and valleys. Point, line 

and polygonal features, all of which are embedded within the pyramid, are arranged in 

a hierarchical manner. Each polygon is stored as a collection of one or more line 
features, which in turn references, via a line generalization tree, vertices within the 
pyramid. Point features are represented as direct references to these vertices. It is noted 
that Kraak and Gazdzicki (1991) present a triangle-based terrain model capable of 
representing both the terrain surface and spatial objects related to it. This model is 

applied to what they term Cartographic Terrain Modelling (CTM). The fundamental 
difference between CTM and the model presented in this paper is that CTM is limited 
to single-scale representation of data. 

In certain cases, constrained edges within a triangulation may represent more than 
one feature. For example, a national boundary very often coincides with some physical 
boundary, such as a river. Furthermore, objects of interest may consist of sets of point, 
line and polygonal features. This can be illustrated by considering a factory as an object 
of interest, which is itself made up from point, line and polygonal features. To 

accommodate such occurrences, while at the same time minimizing data duplication, 

an additional entity, referred to here as an object, is introduced into the data structure 
hierarchy. Each object consists of an unique object identifier and a list of pointers to the 
appropriate point, line and polygonal features making up that object. For the first 

example, the physical boundary and the political boundary, each stored as a separate 
object, would refer to the same embedded feature or list of features. The factory, also 
stored as an object, would refer to each of its constituent point, line and polygonal 
features. 
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4.1. Spatial access 
Efficient access to this hierarchical model is provided by introducing spatial 

indexing at each level in the pyramid. This indexing technique replaces the parent 
triangle to child triangles pointer method employed by De Floriani. The method used 
here employs a regular grid overlay scheme, where each grid cell maintains a list of 
references to all data which intersect it. For the model presented here, it is thought 

necessary to provide spatial indexing on objects and triangles. Also, since certain 
objects and triangles may be relevant to some levels in the pyramid and not to others, 
the spatial access structure has been separated into levels. Therefore, at each level in the 

pyramid there is an object grid, referencing all objects relevant to that level, and, 
similarly, a triangle grid, referencing all triangles relevant to that level (figure 4). In this 

particular model, an object or triangle is deemed to be related to a particular object cell 
or triangle cell, respectively, if any part of that object or triangle intersects the cell. It is 

clear that the number of cells in each spatial grid will determine the optimality of 
searching operations. A dense grid will, in general, be more efficient in terms of search 
time than a more refined grid. However, this benefit has to be weighed against the 
resulting increase in storage requirements. McCullagh and Ross (1980), when using a 
similar type of grid structure to assist in constructing the Delaunay triangulation of a 
set of points, suggest a grid which allows an average of four points per cell. In the model 
described here, the number of cells within each grid varies according to the total 

number of objects or triangles it references, following the approach described by 
Franklin (1983) for indexing lines for detecting intersections. A temporary grid index, 

which references points, is also used for the purpose of efficient pyramid construction. 
Although this indexing scheme lends itself to referencing all occurrences of objects 

within a specified area, it does not take into account the spatial extent of individual 

objects. Thus locationally-specific retrievals involving areally extensive objects could 
lead to a large amount of unwanted data having to be read. This would be particularly 
true of high resolution data. This problem could be solved by ensuring that individual 

object components, that is, the point, line and polygonal features from which an object 
is made up, be limited in size. This can be achieved by segmenting any overly extensive 
line features and polygonal features (or to be more precise, the line features from which 
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Oi -- r- - --i 21- -- 
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iH3 
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i 
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Intersecting 
Triangles 

00 A3 P3 N3 
10 P3N313 
20 N3 M3 D3 
01 A3P3K3 
11 P3A3K3J3L3H3 
21 M3L3J3D3H3 
02 A3 K3 G3 
12 K3 G3 H3 
22 G3 H3 D3 

Figure 4. Example of how triangles are spatially referenced using a regular grid overlay. Each 
cell references all triangles which intersect it. A similar structure is used for accessing 
objects. 
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the polygonal feature is made up) into a series of less spatially extensive line features. 
For example, an object, representing a river, might originally have had a single 
reference to one spatially extensive line feature. After segmentation has taken place, the 
same object will now have a list of references to a series of less extensive line features, 
these having replaced the original line feature. A further enhancement of this structure 
would be to replace the regular-sized grid with a data-adaptive indexing method such 
the bounding quadtree (Abel and Smith 1983). This would ensure that no single cell 
references more than a preset maximum amount of data. 

The issue of spatially segmenting line data within a multiresolution model is quite a 
topical one. The multi-scale line tree (Abraham 1988, Jones and Abraham 1986 and 
1987), an extension of the earlier line generalization tree (Jones 1984, Jones and 
Abraham 1987), provides efficient spatial access to linear data at various scales. It 

achieves this by classifying the internal points of digitized lines into hierarchies of scale- 
specific levels, which are themselves spatially segmented in a data-adaptive manner, 
using quadtree cells. A recent data structure, the Reactive-tree (van Oosterom 1991 
and 1990), also provides efficient storage and retrieval of geometric objects at multiple 
levels of detail. By combining the R-tree (Guttman 1984), which provides efficient 
access to data objects by storing bounding rectangle information with each object, and 
the BLG-tree, the Reactive-tree allows both objects and the points making up the 
objects to be retrieved on the basis of position and scale. A more recently published 
paper by Becker et al. (1991) introduces the Priority Rectangle File (PR-file). Here, the 
points defining line and polygonal objects are assigned levels of scale significance using 
a line generalization algorithm. These points are then stored in a data structure which 
combines certain aspects of the line generalization tree and the R-file (Hutflesz and Six 
1990). Here the possible retrieval of unwanted data is minimized by limiting the 
maximum number of points contained within a single bounding rectangle, thus limiting 
the spatial extent of individual object parts. 

The type of spatial indexing method employed can be governed to a certain extent 
by the characteristics of the data that are being included in the model. If individual line 
features are likely to be spatially extensive it would be wise to consider a scheme which 
is able to segment spatially individual data items. However, it may be that relative to 
the total area being modelled, individual line features are not extensive. If this is the case 
it would appear sensible to remain with a simpler approach. The authors, while 
admitting that the simplicity of their spatial model is currently the sole motivating 
factor for its use, are as yet unsure whether a more elaborate scheme would significantly 
improve the spatial search facilities provided by their model. It may be noted that the 
recent work by van Oosterom (1991 and 1990) and Becker et al. (1991) provides 
examples of multi-scale storage schemes, which in the former case do not segment 
individual linear features, while in the latter case their component vertices are grouped 
into rectangular subdivisions. The relative efficiency of the two schemes is not known. 

4.2. Critical point selection 
A method of deciding at which level, and then subsequently at all lower levels, a 

particular point first appears in the pyramid has to be established. It will be governed 
by either the point's relevance to a particular object or its significance in describing the 
surface. The Delaunay pyramid selects points by means of a point insertion algorithm. 
Here, a point is included at a particular level if the vertical distance of that point from 
the approximated surface is greater than a given error tolerance for that level. Any 
point which does not form part of a topographic object will be dealt with in this way. 
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Those remaining points, all of which form part of an object, present a more difficult 

problem. The level at which a particular point of a linear feature is inserted can be 

generated by using a suitable line generalization algorithm (reviewed by McMaster 
1987) to classify the internal points of the linear feature into a specified number of levels 

of scale-related significance. The method used here is that of Douglas and Peucker 
(1973), which has proved successful in retaining the shape information of a linear 
feature as the number of points describing it is reduced (McMaster 1983). Another of its 

properties, essential in allowing a linear feature to be stored hierarchically, is that 
points selected for small scales are a subset of those used in a larger-scale 

representation. This algorithm is also suitable to some extent for simple polygonal 
shapes. Generalization of the points of more complex polygonal features, such as 
buildings, into levels of scale significance cannot easily be achieved automatically. The 
level at which these points are inserted would, under the present version of our scheme, 
have to be determined manually. It should be noted that each point forming part of a 
feature will also have a height value associated with it which is used to evaluate the 
point's significance in describing the surface. This value may have formed part of the 
source data or will have been interpolated using a previously built Delaunay 
triangulation of all the surface points. It is therefore possible that points which form 

part of an object may be inserted at a higher level in the pyramid than the level 

originally indicated by the object generalization procedure. 

5. An algorithm for building the hierarchical model 
An algorithm, adapted from that of De Floriani and Puppo (1988) for building a 

constrained Delaunay pyramid (CDP), is given in figure 5. It constructs the model from 
a set of points S and a list of objects 0. Each object is defined by a list of references to its 
constituent point, line and polygonal features. Polygonal features reference line 
features, which in turn reference points, via a line generalization tree. Each point which 
forms part of an object must be included in S and also have a level flag associated with 
it. This level flag ensures that it is inserted at the correct level of the pyramid, although it 
is possible that the point is inserted at some higher level according to its importance in 
approximating the surface. 

Each object is inserted into a triangulation by sequentially inserting each of its line 
and polygonal feature components (point components will already have been 
included). Line and polygonal features are inserted as a series of straight-line segments. 
Algorithms for inserting points and straight-line segments into a Delaunay triangu. 
lation are given in the literature (De Floriani and Puppo 1988, Heller 1990). Brief 
descriptions of these methods have been shown in figure 2 and figure 3. 

The CDP algorithm as presented by De Floriani and Puppo is restricted in that it 
caters only for non-intersecting straight-line segments. This creates a problem when 
introducing topographic features into the pyramid because their constituent straight- 
line segments can sometimes intersect each other. For example, this may occur when a 
road crosses over a county border. The adapted CDP algorithm makes provision for 
such occurrences by firstly introducing an additional point into the pyramid at the 
point of intersection of the two line segments (this point is given an interpolated 
elevation value), and then substituting the two original line segments with four 
replacement segments. This process is illustrated in figure 6. 
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adapted cdp algorithm 
set up object generalisation tolerances for each level 
assign levels of significance to each object point 
build line generalisation tree for line features 
set up surface error tolerances for each level in the pyramid 
create the initial triangulation 
set up spatial grids 
get surface error tolerance for first level 
set finished = false 
while (more unused points in S) and (not finished ) 

find next point to insert 
check accuracy of current level, ie. all unused points are within surface error tolerance 
if ( current level is accurate) then 

insert any unused object points required at this level 
update spatial grids 
if ( current level is last level ) then 

set finished = true 
else 

get error tolerance for the next level 
endif 

else 
insert the point 
update spatial grids 
set point to used 

endif 
endwhile 
while ( more objects in 0 to insert ) 

for each level in the pyramid 
for each object part 

insert object part into triangulation 
endfor 
update spatial grids 

endfor 
endwhile 

end adapted cdp algorithm 

Figure 5. 

Segment a-b cannot be Therefore, delete segment 
inserted since it intersects c-d and insert point x where 
another line segment, c-d. line segments intersected. 

Figure 6. 

Finally, insert four 
substitute line segments, 
a-x, x-b, c-x and xd. 
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6. A relational database implementation 
The modified constrained Delaunay pyramid algorithm has been implemented in C 

on a DEC Vax 8800 machine. Objects, features, points, the spatial index grids and the 
constrained Delaunay pyramid are stored as tables within a relational database 

management system (figure 7). All processes of pyramid construction and update 
operate directly on this database. A pyramid is built using the Building Program, which 
is also used for adding points and objects to any existing pyramid. The pyramid can 
also be accessed by application programs capable of tasks such as producing 2.5-D 
views, contouring, profiling and point location and height evaluation. 

Each point belonging to S, having been assigned a unique identifier (point-id), is 
stored in the Point Table. Initially, the level-used flag for all surface points will be 
assigned a null value while the level_used flag of linear feature points will be set to the 
level of significance assigned to it by the line-generalization algorithm. The level_used 
flag of all points will be updated depending on which level in the pyramid the point is 
first used. It is noted that for large data sets, storing all the points in a single table could 
lead to slow data access. A more efficient method could be to store all the points 
associated with particular levels in separate tables. 

The Triangle Table holds the details of each of the triangles in the pyramid. The 
table is constantly updated as the pyramid is built. Each triangle in the pyramid is given 
an identification number (trLid) when it is created. It should be noted that if a triangle 
exists at more than one level (in the form of a boundary or external triangle in the lower 
level) it will have the same tri_id at each level. The level to which a triangle belongs is 
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z value Real adll Id let 
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Figure 7. The relational Database Implementation, showing the column (field) descriptions for 
each table. 
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denoted by its level_id value. Therefore the tri_id coupled with the level_id forms a 
unique key for each triangle. As in the case of the Point Table, it may prove beneficial to 

store each triangulation, or level, in a separate table. The tri_type flag is set to 0,1 or 2 
depending on whether the triangle is internal, boundary or external, respectively. The 

geom_id field is used as a pointer to the appropriate record in either the Internal or 
the Boundary Table. The Internal Table holds the full geometry and adjacency 
information for internal triangles while the Boundary Table holds the adjacency 
information for boundary triangles. The vertices of Boundary triangles are found by 

obtaining details from a higher level triangle. No External Table is required since the 
geometry and adjacency information of an external triangle can be found by retrieving 
the details of the triangle with the same tri_id as it in the previous level of the pyramid. 

There is a Linear Feature Table, a Polygonal Feature Table and an Object Table for 

each level in the pyramid. Each of the Linear Feature Tables can be thought of as a level 
in a line generalization tree. An individual linear feature (linear-id) is described by a list 

of points (point-ids), each of which has a final pyramid level of significance assigned to 
it. Each of these points has a sequence number (seq_nos) associated with it indicating its 

position in the original line. To assist in making the retrieval of data more efficient, the 
Linear Feature Tables also keep a record of the level at which each linear feature first 

appears in the pyramid (first-level-no). The polygonal features present at a particular 
level in the pyramid are stored in the Polygonal Feature Table assigned to that level. 
Each polygonal feature (polygonal-id) is described by a list of linear features (linear_ 
ids) from which it is made up. Each Object Table contains a reference to all objects 
relevant to its particular level in the pyramid. Each object reference consists of an object 
identifier (object-id), a list of object class identifiers (class-ids) and lists of the point 
(point-ids), linear (linear-ids) and polygonal (polygon_ids) features which make up 
that object. The object class identifiers are used to assist in thematic retrievals of 
information. 

The object Grid Tables and Triangle Grid Tables correspond to the spatial grids 
detailed in § 4.1. Each entry in a spatial table consists of the x, y coordinates (x_coord, 
y_coord), of the bottom left hand corner of the cell it represents and a list of objects or 
triangles (object-ids or tri_ids) which intersect that cell. The number of cells in the x and 
y direction of each object grid (object-grid-x, object-grid-y) and each triangle grid 
(triangle-grid-x, triangle-grid-y) is stored in the Pyramid Table. This table also stores 
the lateral error (related to object resolution) and vertical error (related to terrain 
resolution) associated with each level. 

All lists stored in the relational database tables (point-ids, linear_ids, polygon-ids, 
seq_nos, object-ids and tri_ids) are, for implementation purposes, stored as character 
strings. These strings are converted into integer values by the Building Program (and 
any applications program) before being used. 

7. Integration of data into the relational database system 
The system described has been used to model data acquired from the British 

Geological Survey (BGS). Two data sets were involved-line data, representing 
geological outcrop boundaries, and terrain data in the form of irregular (x, )y, z) point 
data. The data covers a5 km by 5 km square in the Grantham area. Figure 8 is a plot of 
a 2.5 km by 2.5 km section of the terrain data and contains 894 points. Figure 9 is the 
geological line data for the same area. The lines are represented by a total of 727 points. 

The data sets were used as input for the constrained Delaunay pyramid Building 
Program. The number of levels in the pyramid was restricted (arbitrarily) to two. 

w 
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i Figure 8. Number of points = 894. 

Published Papers 

Figure 9. Number of points= 727. 

Additional, intervening levels could have been included, giving a more gradual change 
in detail between levels. It should be noted that the storage benefit gained by having 
boundary and external type triangles within the pyramid is fully realised only when 
changes in detail between successive levels are relatively small. This is because large 

changes in scale between successive levels will probably cause many of the triangles in 
the parent triangulation to be replaced by new, non space-saving internal triangles in 
the lower level triangulation. Each level has two-error tolerances associated with it: (i) 

vertical error which governs how accurately the level depicts the terrain, and (ii) lateral 
error which governs how accurately the line data are represented at that level. The error 
tolerances chosen in this case were 

Level Vertical error (m) Lateral error (m) 

1 10.0 50.0 
2 5.0 10.0 
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These error tolerances were chosen simply to emphasize the change in detail 
encountered at each level of the pyramid. The authors are at present unaware of a 
relationship that exists between these error tolerances and true scale. The constrained 
Delaunay pyramid produced is shown in figures 10 to 13. 

8. Performance 
The worst-case time complexity of our adapted constrained Delaunay pyramid 

algorithm is 0(n2), which represents a lower limit for any incremental Delaunay 
triangulation algorithm applied to a set of points S (see De Floriani and Puppo 1988). 
The relational database implementation has been tested on a number of large data sets. 
Performance for building the database was poor in terms of processing time, 
particularly when compared to an indexed sequential UNIX-based C version which 

Figure 10. Level 1 unconstrained. 118 level points (e=10 m), 177 line points (e a 50 m). 

Figure 11. Level I constrained. 118 level points (e =10 m). 177 line points (e a 50 m). 
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Figure 12. Level 2 unconstrained. 190 level points (e5 m), 338 line points (e a 10 m). 

Figure 13. Level 2 constrained. 190 level points (e=Sm). 338 line points (ea 10m). 

has also been implemented. For example, database construction for the BGS data can 
take up to 2 hours using the relational database version compared to a time of about a 
minute for the indexed sequential UNIX-based version. This is due for the most part to 
the large number of single record SELECT and INSERT operations delivered by the 

program to the database during the building process. It is believed that time efficiency 
will improve significantly by implementing within the program a type of paging 
mechanism. One possibility here would be for large blocks of tables, possibly whole 
tables, to be read into internal arrays where they would be processed before being 

returned to the database, thus simulating the main memory-based version. It should be 

noted, however, that the emphasis of the current research is on the logical design rather 
than an optimal implementation of the proposed database. 
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The amount of storage required for De Floriani's pyramid structure is the space 
used to store each triangulation plus that required to store the inter-level links 
(De Floriani 1988) and is given by 

I" (1) 4n'+5(m+1)+ Y, (9tß+2s) 
r=o 

where n' is the total number of points used in the pyramid, (m+ 1) gives the number of 
levels in the pyramid, ti represents the number of triangles at level i and si gives the 
number of triangles of level (i+ 1) intersected by triangles of level 1. This equation 
indicates a storage requirement of O(n), where n is the total number of points in S. 

Using a similar notation, the storage requirements of the proposed scheme compare 
favourably with those of the constrained Delaunay pyramid and consist of the space 
required to store each triangulation plus the spatial index at each level. Using a 
separate table for each triangulation and considering the worst case, that is when all 
triangles are stored as internal and each triangle grid cell contains a list of all triangles 
contained in the triangulation (for the sake of a valid comparison with De Floriani, the 
storage required for spatially indexing objects is neglected), the amount of storage 
required is represented as 

4n'+2(m+ 1) + (11 +2xiyl)tr (2) 
1-o 

where xi and yi are the number of spatial cells in the horizontal and vertical directions at 
level i respectively. Since m<n, storage requirements will be independent of the number 
of levels in the pyramid and will be highly dependent on the number of spatial cells at 
each level. 

Additional storage will be required for the Linear Feature Tables, Polygonal 
Feature Tables and Object Tables. This will be directly proportional to the number of 
features and objects encoded. It should be noted that object specification requires 
referencing only the identity of vertices, rather than the coordinates, which are stored 
only once in the Points Table. 

9. Discussion 
An alternative approach to implementing the spatial index for triangles would be to 

store only one triangle per cell, possibly the most central. All other triangles 
intersecting that cell could then be deduced by accessing recursively the surrounding 
adjacent triangles. Equation (2) would then become 

4n'+2(m+1)+ (lltr+3xiy, ) (3) 
ro 

which is 0(n). 
The incremental triangulation algorithm that we used relies on the fact that 

inserting a point or constraining edge results in only local modifications to the 
triangulation. It may be that the dual edge structure rather than the traditional 
triangle-oriented construct used in our model, would be more appropriate for such an 
algorithm (Heller 1990). 

At present, points are selected for inclusion at a particular level depending on either 
their importance in describing the surface or their significance in describing a particular 
object. Thus surface-specific points are selected according to their vertical displace- 
ments relative to the surface, while object points may also be selected on the basis of 
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their lateral displacement. Work has recently begun to design data structures suitable 
for modelling 3-D geological data (see Jones 1989). With this in mind, investigations 
into developing a fully 3-D point selection algorithm are currently being undertaken. 

An alternative approach to storing the pyramid, which would save a considerable 
amount of storage space, is that of using implicit triangulations (Kidner 1991, Kidner 

and Jones 1991). The pyramid would be built in the same way as previously described. 
However, once all required levels of accuracy were obtained and points allocated a level 

at which they are included, no permanent storage of the triangulations would be 

retained. Triangulations could then be reconstructed at run time using a suitable 
constrained Delaunay triangulation algorithm. This method could take advantage of 
the recent development of fast parallel algorithms for building the constrained 
Delaunay triangulation from a set of points. An example of such an algorithm, for 

normal Delaunay triangulations, has recently been implemented using a network of 
transputers (Ware and Kidner 1991). Also, for certain applications, it may not be 

appropriate to include all classes of object as constraints within the pyramid. Implicit 
triangulations would allow the user to select, at run time, which classes of object are to 
be included in the model. It is thought that such a system would benefit by storing those 
points forming part of an object and those which define the surface in separate tables. 

10. Conclusion 
A data storage scheme has been presented which succeeds in allowing terrain and 

topographic object data to be combined in a single database at multiple levels of detail. 
Points, lines and polygons are integrated with, and serve to constrain, an hierarchical 
triangulation which avoids data duplication. The database is accessed via a spatial 
index referencing topographic objects and the triangles that model the terrain surface. 
The scheme has been implemented with both a commercial relational database 

management system and with an indexed sequential UNIX-based file handling facility. 
For the purpose of building the database, the relational implementation gave a 
relatively poor time performance, which experiments with main memory data 
processing indicate could be greatly improved. Current research efforts are concerned 
with developing a fully three-dimensional multiscale model suitable for representing 
geological data. 

Acknowledgments 
The authors would like to express their appreciation to The British Geological 

Survey who have provided financial and technical support for parts of the research 
presented in this paper. JMW is currently supported by a SERC CASE studentship. 

References 
ABEL, D. J., and SMITH, J. L., 1983, A data structure and algorithm based on a linear key for 

rectangular retrieval. Computer Visions, Graphics and Image Processing, 2,1-13. 
ABRAHAM, I. M., 1988, Automated cartographic line generalisation and scale-independent 

databases. Ph. D Thesis, Dept. Computer Studies, The Polytechnic of Wales. 
BALLARD, D. H., 1981, Strip trees: a hierarchical representation for curves. Communications, 

Association for Computing Machinery, 24,310-398. 
BARRERA, R., and VAZQuEs, A. M., 1984, A hierarchical method for representing relief. 

Proceedings Pecora IX Symposium on Spatial Information Technologies for Remote Sensing 
Today and Tomorrow, Sioux Falls, South Dakota (South Dakota: IEEE), pp. 87-92. 

A3 - 27 



www.manaraa.com

Appendix 3 Published Papers 

Multiresolution topographic database 495 

BECKER, B., Six, H. -W., and WIDMAYER, P., 1991, Spatial priority search: An access technique for 
scaleless maps. Proceedings SIGMOD 1991 (Denver, Colorado: ACM), pp. 128-137. 

CH EN, Z. T., and ToBLER, W. R., 1986, Quadtree representation of digital terrain. Proceedings of 
Auto-Carto London edited by M. Blakemore (London: Auto-Carlo London Ltd), pp. 475- 
484. 

DE FLORIANI, L., 1988, A data structure for encoding a Delaunay pyramid. Technical Report 
IMA n. 19/88 Genoa, Italy, February 1988. 

DE FLORIANI, L., 1989, A pyramidial data structure for triangle-based surface description. 
I. E. E. E. Computer Graphics and Applications, March 1989,67-78. 

DE FLORIANI, L., and Puppo, E., 1988, Constrained Delaunay triangulation for multiresolution 
surface description, IEEE Computer Society Reprint (Washington DC: Computer Society 
Press). (Reprinted from Proceedings Ninth IEEE International Conference on Pattern 
Recognition, Rome, November 1988). 

DE FLORIANI, L., FALCIDIENO, B., NAGY, G., and PIENOVI, C., 1984, A hierarchical structure for 
surface approximation. Computer and Graphics, 8,183-193. 

DOUGLAS, D. H., and PEUCKER, T. K., 1973, Algorithms for the reduction of the number of points 
requires to represent a digitised line or its caricature. Canadian Cartographer, 10,112-122. 

FRANKLIN, W. R., 1983, Adaptive grids for geometric operations. Proceedings of Auto-Carlo 6, 

edited by B. S. Wellar (Ottawa: Steering Committee of Auto-Carlo 6), pp. 230-239. 
GOMEZ, D., and GUZMAN, A., 1979, Digital model for three-dimensional surface representation. 

Geo-Processing, 1,53-70. 
GUTTMAN, A., 1984, R-trees: A dynamic index structure for spatial searching. Proceedings 1984 

ACM-SIGMOD International Conference on Management of Data, June 1984 
(Boston, MA: ACM), pp. 47-57. 

HELLER, M., 1990, Triangulation algorithms for adaptive terrain modelling. Proceedings Fourth 
International Symposium on Spatial Data Handling, Zurich, edited by K. Brassel and 11. 
Kishimoto (Zürich: International Geographical Union), pp. 163-174. 

HUTFLESZ, A., Six, H. -W., and WIDMAYER, P., 1990, The R-file: An efficient access structure for 
proximity queries. Proceedings of the IEEE Sixth International Conference on Data 
Engineering (Los Angeles: IEEE), pp. 372-379. 

Jot ss, C. B., 1984, A tree data structure for cartographic line generalisation. Proceedings 
Eurocarto III (Graz: Research Center Joanneum, Institute for Image Processing and 
Computer Graphics). 

JONES, C. B., 1989, Data structures for three-dimensional spatial information systems in geology. 
International Journal of Geographical Information Systems, 3,15-31. 

JONES, C. B., and ABRAHAM, I. M., 1986, Design considerations for a scale-independent 
caruographic database. Proceedings of the Second International Symposium on Spatial 
Data Handling, Seattle, edited by D. F. Marble (Seattle: International Geographical 
Union), pp. 384-398. 

JONES, C. B., and ABRAHAM, I. M., 1987, Line generalisation in a global cartographic database. 
Cartographica, 24,32-45. 

KIDNER, D., 1991, Digital terrain models for radio path loss calculations. Ph. D. Thesis, Dept. 
Computer Studies, The Polytechnic of Wales. (available from Defence Research Infor- 
mation Centre, Kentigern House, Brown Street, Glasgow). 

KIDNER, D., and JONES, C. B., 1991, Implicit triangulations for large terrain databases. 
Proceedings of the Second European Conference on Geographical Information Systems, 
Brussels, April 1991, edited by J. Harts, H. F. L. Ottens and 11. J. Scholten (Utrecht: EGIS 
Foundation), pp. 537-546. 

KRAAK, M. J., and GAZDzICKI, J., 1991, Triangulation based modelling of spatial objects in 
relation to the terrain surface. Proceedings of the Second European Conference on 
Geographical Information Systems, Brussels, April 1991, edited by J. Harts, If. F. L. Ottens 
and H. J. Scholten (Utrecht: EGIS foundation), pp. 564-572. 

MCCULLAGH, M. J., and Ross, C. G., 1980, Delaunay triangulation of a random data set for 
isarithmic mapping. The Cartographic Journal, 17,93-99. 

MCMASTER, R. B., 1983, A mathematical evaluation of simplification algorithms. Proceedings of 
Auto-Carto 6, edited by B. S. Wellar (Ottawa: Steering Committee of Auto-Carto 6), 2, pp. 
267-276. 

MCMAsTER, R. B., 1987, Automated line generalisation. Cartographica, 24,74-111. 

A3-28 



www.manaraa.com

Appendix 3 Published Papers 

496 Multiresolution topographic database 

PEUCKER, T. K., FOWLER, R. J., LITTLE, J. J., and MARK, D. M., 1978, The triangulated irregular 
network. Proceedings of the Digital Terrain Models Symposium, ASP/ACSM, May 1978 
(Falls Church, Virginia: ASP and ACSM), pp. 516-540. 

SCARLATOS, L., and PAVLIDts, T., 1991, Adaptive hierarchical triangulation. Auto-Carto 10, 
Baltimore, March 1991 co-Chaired by D. Mark and D. White (Baltimore: ACSM and 
ASPRS), pp. 234-246. 

SCHEK, H: J., and WATERFELD, W., 1986, A database kernel system for geoscientific applications. 
Proceedings of the Second International Symposium on Spatial Data Handling, Seattle 
edited by D. F. Marble (Seattle: International Geographical Union), pp. 273-288. 

VAN OOSTEROM, P., 1991, The Reactive-tree-A storage structure for a seamless, scaleless 
geographic database. Auto-Carto 10, Baltimore, March 1991, co-Chaired by D. Mark and 
D. White (Baltimore: ACSM and ASPRS), pp. 393-407. 

VAN OOSTEROM, P., 1990, Reactive data structures for geographic information systems. Ph. D. 
Thesis, Dept. Computer Science, Leiden University. 

VAN OOSTEROM, P., and VAN DEN Boss, J., 1989, An object-oriented approach to the design of 
geographic information systems. Proceedings of the First Symposium on Large Spatial 
Databases SSD '89, July 1989, (Santa Barbara: University of California), pp. 255-269. 

WARE, J. A., and KIDNER, D., 1991, Parallel implementation of the Delaunay triangulation within 
a transputer environment. Proceedings of the Second European Conference on Geographical 
Information Systems, Brussels, April 1991, edited by J. Harts, H. F. L. Ottens and 11. J. 
Scholten (Utrecht: EGIS foundation), pp. 1199-1208. 

A3-29 



www.manaraa.com

Appendix 3 Published Papers 

The Implicit Triangulated Irregular Network 
and Multiscale Spatial Databases 

CHRISTOPHER B. JONES, DAVID B. KIDNERt AND J. MARK WAREt 

*Department of Geography. Uninersifv of Cambridge. Downing Place. Cambridge CB2 SEN. UK 
tDcparfinent of Computer Studies, Unitrrsity rJ Glamorgan. Pontypridd. Mid Glamorgan CFS7 IM 

UK 

The triangulated irregular network (TIN) provides a versatile and widely used approach to representing 
terrain models in a way that retains the original sample points, adapts to variation in data density and 
incorporates linear features corresponding to natural or man-made phenomena. Classification of the 
scale-related priority of the constituent points and linear features can be used to create hierarchical. 
multiresolution TIN representations A large proportion of the data Items Included in conventional and 
hierarchical TIN data structures are concerned with recording the topology of the triangulation. Although 
TINs typically use many fewer points than the main alternative representation of regular rectangular 
grids, they do not usually occupy much less data storage, due to the topological data. This paper derrihes 
a novel multiresolution storage scheme which uses an approach termed the Implicit TIN, In which storage 
requirements are reduced significantly by storing only the vertices and constraining features. TIN topology 
is reconstructed by a procedure when required. The Implicit TIN storage scheme has been demonstrated 
in the context of an experimental mulliscale database. Variableascale acces is provided to polygonal 
regions of a terrain model which includes polygon, line and point objects that constrain the constructed 

triangulated model. 
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1. INTRODUCTION 

The rapid growth in the use of geographical information 

systems (GIS) has introduced the requirement for terrain 

models that combine digital elevation data with natural 

and man-made topographic features. Applications 

requiring such models include landscape architecture, 

civil engineering and radio communications network 

planning. A characteristic of many such GIS applications 
is the need to retrieve data at different levels of detail, 

or generalization, for purposes of scale-variable visuial- 
ization and analysis. 

A spatial model which can represent digital elevation 
data at its original locational precision and can conform 

exactly to known linear features, such as ridges, roads 

and valleys. is the triangulated irregular network (TIN) 

[22] A TIN defines a triangulation for a given set of 

sample points. In the absence of linear features, it is 

common practice to create a Dclaunay triangulation. It 

is characterized by providing the set of most equiangular 

triangles [11,23], a property which is desirable when 
interpolating within triangles. A Delaunay triangle is 

one in which a circumscribing circle passing through its 

vertices contains no other points (Figure 1). Sibson [23] 

states that for a finite set of distinct data sites, there is 

only one locally equiangular triangulation, known as 

the Dclaunay triangulation, which is the dual of the 
Dirichlct. Voronoi or Thiessen tessellation. This is an 
important concept in geographical applications, since a 
Thiessen polygon can be used to define the region of 
influence of any point in an areal context [20]. in 

Figure 1, points 1-6 are known as the Thiessen neigh. 
hours of point P. 

Since a Delaunay triangulation is dependent only 
upon the spatial distribution of vertices, it cannot be 
guaranteed to conform to known linear tcatuses that are 
defined by subsets of the vertices. However, the triangula- 
tion can be constrained, such that the linear features are 
correctly represented by a sequence of triangle edges [4], 

The main alternative to the TIN is the regular rectan- 
gular grid. Although regular grids are convenient for 
storage and some spatial data processing operations, 
they are not able to preserve arbitrarily located point 
and linear data, except at the cost of significant data 
redundancy. Some commercial GIS use the TIN for the 
primary database and convert to a grid temporarily, in 
assist, for example, in visuali, atinn. 

For the purposes of multiscale retrieval, hierarchical 
data structures based on the TIN have been developed. 
The Delaunay Pyramid [6] succeeds in retaining the 
properties of Dclaunay triangulation at all levels of 
detail. It has been modified in the Constrained Delaonay 
Pyramid (CDP) (7] to incorporate linear features cnr" 
responding to known structural edges in the terrain. 
Differences in resolution or scale between the hierarch. 
ical levels of the CDP are determined solely on the basis 
of vertical error of a level relative to the highest level of 
detail available. If the surface model is constrained by 
linear features which represent objects, such as rivers 
and roads, the use of vertical error alone is inadequate. 
since it will not retain corresponding degrees of general- 
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FIGURE I. Local Delaunay trinnßulation about a point P. 

ization in the lateral displacement of lines. This issue 
has been addressed in the Multiresolution Topographic 
Surface Database (MTSD) [27]. which integrates the 
constrained Delaunay Pyramid with a multiresolution 
representation of linear features, the Multi-Scale Line 
Tree (MSLT) [15,16]. 

In creating databases that represent TIN-based data 

structures, a large amount of storage is taken up by the 
pointers used to represent the topology, such as the 
connectivity of triangle vertices and edges. De Floriani 
[5] states that the topology of a triangular subdivision 
is completely and unambiguously Tepresented by any 
suitably selected subset of nine adjacency relations 
between entities (vertices, edges, triangles). Referring to 
Figure 2, the assumption is that having stored the coord- 
inates of each uniquely identified vertex Vn, some addi- 
tional data must be stored to define the structure of the 
triangulation. Which of the nine schemes is most appro- 
priate will depend upon a combination of type of opera- 
tions to be carried out on the triangulation and the 
importance of saving storage space. For any triangula- 
tion of N nodes. B of which are on the boundary (convex 
hull), there are 2N-B-2 triangles and a total of 
3N-B-3 edges, or 6N-2B-6 directed pointers, if 

stored as links from each vertex. For a vertex-based TIN 
which references edges, each node's coordinates may be 
stored with a pointer to the list of connected vertices 

(referred to as a vertex-vertex relation, i. e. I in Figure 2). 
If coordinates and pointers require the same unit storage 
space, the total storage will approximate to 9N (i e. x, y 
and z coordinates for each of the N nodes and 
6N-28-6 links). The triangle-based TIN will require 
more storage (approximately I5N) since for each or the 
2N-B-2 triangles, pointers to the three vertices and 
three neighbouring triangles are stored (12N-68-12), 
together with the vertex coordinates (3N)" 

In contrast to the nine schemes referred to, it is 
possible to reduce the permanent storage requirements 
of the TIN very greatly by only storing the vertices and 
any linear constraints on the triangulation. When the 
triangulation, or a part of it, is required for a particular 
application, it can be reconstructed temporarily using a 
triangulation algorithm. Provided the algorithm oper- 
ates on predetermined criteria such as the Delaunay 
triangulation and its constrained variant, it is possible 
to ensure that the topology of the original triangulation 
will be reconstituted. The approach is based on offsetting 
storage against computation and is called Implicit 
Triangulation. It was implemented originally for the 
application of retrieving profiles for radio path loss 
calculations from a large, single scale, terrain database 
[17]. In this paper we present, for the first time, the 
algorithms used to implement the Implicit TIN and 
show how they can be applied to create a multiscale 

I Vertex - Vertex : Given VI Store V2, V3, V4 
2 Vertex - Edge : Given V1 Store E 1, E2, E3 
3 Vertex *Triangle : Given VI Store TI, T2, T3 

4 Edge " Vertex ; Given El Store V 1. V2 
5 Edge " Edge : Given El Store E4, E2, ES, E3 
6 Edge -Triangle : Given El Store T1, T3 

7 Triangle - Vertex : Given TI Store V 1. V2. V3 
8 Triangle - Edge : Given T( Store El. E4. E2 
9 Triangle - Triangle : Given TI Store T2.73. T4 

vs 
FIGURE 2. Illustration of the 9 pos ibk relations between pun of entities Ina TIN Iwhere Vol. reruns; Lit. allies and 7a. tnanRksl. 
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database which integrates ground elevation data with 
other topographic features. 

By reconstructing a surface from its original vertices 

at the time it is retrieved, the Implicit TIN provides the 
basis for a versatile approach to building multiscale 
databases. In a multipurpose spatial database, both the 
type of features to be retrieved and the detail with which 
they should be represented may vary from one retrieval 
to another. If terrain elevation data are to be integrated 
in a flexible manner with ground surface features, it is 

desirable to defer the definition of constraints on the 

surface triangulation until the features of interest are 
defined. Thus the retrieved surface will consist only of 
the relevant features. Classification of vertices according 
to their importance in reducing error in vertical elevation 

and in laterally defined feature representation allows 

selective retrieval of those data items that are appropriate 
to the application requirements. 

In the following sections we start by describing our 
current multiscale version of the Implicit TIN, with 
reference to the selection of vertices for different scales 
and the reconstruction of an explicit TIN within a 
spatially defined subregion of the database. This is 
followed in Section 3 by a review of multiscale repres. 
entations of linear features and an explanation of how 
such features can be integrated with the Implicit TIN. 
Section 4 describes briefly how multiscale polygonal 
objects can be represented in terms of their consituent 
linear boundaries. Section 5 describes the design and 
performance characteristics of a multiscale topographic 
surface database which integrates terrain elevation data 
with points, lines and polygons, and composite objects 
defined in terms of these primitive spatial objects. The 
final section concludes with a summary of the use of the 
Implicit TIN and outlines future research directions 
related to multiscale geographical databases. 

2. THE IMPLICIT TIN 

The Implicit TIN provides a highly compact storage 
scheme for representing topographic surfaces originally 
encoded as triangulated irregular networks. The impic. 
mcntation reported in Kidner [17) and Kidner and 
Jones [18] stored the vertices of the original TIN in a 
regular rectangular cell spatial indexing data structure. 
in which vertex coordinates were represented by offsets 
from the origin of their containing cell. Reconstruction 
of the triangulated network in a query window involves 
retrieval or the relevant vertices and execution of a 
Delaunay triangulation algorithm. In a comparison or 
different methods for storing digital elevation data [ 17] 
it was found that the Implicit TIN was the most space 
efficient. 

2.1. Vertex selection and initial TIN construction 

Given a set of points representing vertical elevations 
there are several methods for selecting a subset of points 
which can be used to describe the sampled surface as a 

TIN with a specified vertical error [19]. The need for 
selecting vertices from an original set arises when that 
set is in the form of a grid which may have considerable 
redundancy, and when certain applications only require 
a given degree of accuracy which is less than that of the 
complete set of points. The approach used by Dc Floriani 
[6] and Kidner [17] is to triangulate initially a small 
subset of the original points. This could be known 
important points or it could be an artificial set of points 
dcfining a surrounding rectangle. Points are added to 
the initial triangulation by selecting the vertically most 
distant point from the approximating surface, retriangul- 
ating. and repeating the process until no untriangulated 
point is further than a specified tolerance from the 
triangulated surface. Lee [ 19] favours a more computa- 
tionally expensive approach whereby, initially, all points 
arc triangulated and points are removed selectively until 
no triangulated point can be removed without degrading 
the accuracy of the surface below a specified tolerance. 
Selective removal of points involves finding for a given 
triangulation that point which, after removal, is vertically 
nearest to the tetri4ngulated surface. Thus it is an 
iterative process in which a single point is only selected 
for removal after all other points have been considered 
in the same way, involving repeated retriangulation. 

2.2. Combining spatial access with vertex priority accts 
Methods such as the above for point insertion or removal 
enable all vertices of the original set to be ordered in 
terms of their significance in representing the surface. 
Although it would be possible to label all points with 
their priority, if storage requirements are an important 
criterion it may be preferable to place vertices into 
classes defined by an associated limiting error. Using 
this layered hierarchical approach, the vertices required 
to reconstruct a surface are those belonging to classes 
with an error less than or equal to that of the retrieval 
criterion. Vertices or each layer of the hierarchy may 
then be segmented spatially to facilitate the search 
process required to rebuild the triangulation. If the 
vertices belong to a spatially extensive database, spatial 
segmentation is also required to enable efficient retrieval 
of an areal subset or the data. 

The ideal spatial access scheme, given priority-ordered 
vertices, would be one which combined spatial indexing 
with scale-related, or priority, indexing. Efficient spatial 
indexing depends upon being able to group together in 
storage those points which would also be grouped 
together in space. Having clustered data in spatial terms 
they cannot simultaneously be clustered with equal 
efficiency with respect to scale priority, since a cluster 
based on scale priority could not be expected to be 
clustered in space. In practice therefore it is necessary 
to compromise. The solution adopted here is to give 
preference to the spatial indexing, using a quadtree 
directory, but to introduce a hierarchy of spatially indexed levels where each level corresponds to a prespe. 
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cified vertical error associated with the surface. The 
highest level cells contain all vertices required to recon- 
struct the triangulation to the lowest level of resolution, 
i e. largest error. The next level down the hierarchy 
contains the additional vertices which, when combined 
with those in the higher level, would reconstruct the 
surface to the second resolution level. Thus each lower 
level provides the additional vertices required to reduce 
the surface error to that corresponding to its level. This 
approach is comparable to that used by De Floriani in 
the Delaunay Pyramid. except that here we do not store 
a triangulation and we do, unlike the latter scheme, use 
a spatial index for each level. A closer comparison is 
with the methods used for the purposes of multiresolu- 
tion storage of lines by Jones and Abraham [16] and 
by Becker et at. [3]. 

2-1. Structural and non-structural lines 

Before considering algorithms for reconstructing a trian- 
gulation from an Implicit TIN it is necessary to consider 
the linear features that may act as constraints on the 
triangulation. Linear features that are combined with 
terrain models fall into two categories. There are those 
which are structural in the sense that their use as 
constraints in a terrain model will improve the accuracy 
of the model in describing the form of the terrain. These 
lines describe phenomena such as ridges, valleys and 
breaks of slope. We include in this category any lines 
that describe physical objects. Roads, rivers and the 
outlines of buildings are notable examples. Other, non- 
structural lines are those that may be used to constrain 
the triangulation to facilitate visual display of the surface. 
Such non-structural lines could, for example, represent 
administrative boundaries. In sonic circumstances these 
boundaries might coincide with structural lines. 

The significance of this distinction is that when struc- 
tural lines are inserted in a topographic surface database, 
their vertices can be added to the terrain model data 
and the lines designated as necessary constraints. Non- 
structural lines can be distinguished as such and they 
only act as constraints when a particular query requires 
their presence in the retrieved model. 

If linear constraints are to be imposed on a multiscale 
surface representation it is desirable to be able to control 
the degree of detail of the line descriptions. Ideally this 
should be comparable with that of the digital elevation 
model, but this is not always possible if there is a 
mismatch in the levels of detail of the original datasets. 
The MSLT provides a means of representing the vertices 
of linear features in a similar manner to that used in the 
multiscale Implicit TIN (see previous section). The 
MSLT is described in more detail in Section 3. 

2.4. TIN reconstruction with linear constraints 

The effectiveness of the Implicit TIN depends upon the 
ability to reconstruct the original triangulation by means 
of an algorithm which operates on the relevant vertices 

and associated constraints. It is important to ensure that 
when only a part or the surface is being reconstructed 
(which will be the normal case for retrievals on an 
Implicit TIN), all of the relevant vertices and constraints 
are found. Note that if only a subsection of the original 
surface is required in a given spatial window, some or 
the relevant vertices of triangles crossing the border of 
the window will lie outside the window. 

2.5. Extensive region triangulation 
We now present an algorithm which will reconstruct a 
constrained TIN for a given query window. The algo- 
rithm starts by using the query window to generate a 
list of quadtree addresses (Figure 3). These are used to 
access the relevant elevation points and constraining 
objects. It should be noted that all geometric data 
defining objects referenced by quadtree cells are 
retrieved, not just geometric data that intersect the query 
window. The object data, that may consist of polygons, 
linear features or points, are reduced where appropriate 
to a list of edges, the constituent vertices or which are 

aý ý+ý,; . 
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stored, along with the height vertices, in a main-memory 
based 'box-sort' data structure (Figure 4). This regular 
grid structure provides spatial indexing in the course of 
triangulation [20]. 

The correct constrained triangulation is obtained 
in two stages. First a Delaunay triangulation of 
all relevant vertices (from elevation data and 
constraining objects) is performed see Procedure 
DELAUNAYTRIANGIJLATE). Points that are 
interior to the query region will alwavs belong to the 
final triangulation, so initially these points are put onto 
a stack of points to he triangulated The f hiessen 

neighbours of cacti point CURRENT 
_P01NI on the 

stack are then found in the following way. The nearest 
neighbour, NNB, ref CURRENT 

_ 
POINT is deemed to 

be the first Thiessen neighbour. The Thiessen neighbour 
K to the right of the edge (CURRFN"E POIN I. NNI)) 

is then found and added to the list of Thiessen neigh- 

*lI 
Iý r 

rýl' 

(a) 

.1, 

hr urti I he 'I hiessen neighbour to the right of the edge 
IU) RRFN F POINT, K) is then Grund I he process is 
repeated until the latest neighbour is equal to the original 
neighbour. 'I he search for l hiessen neighbours utilises 
the box-sort data structure, such that only local pants 
within the neighhourhnud of it Delaun: n edge are tested 
IIr wever, if the search for triangle vertices includes but 
. %x[ cells which are empty (lie outside the generated 
yuadtree region) or extents heyond the hux-sort c, -ter 
age, the necessary quaritree cells to the database inter- 
accted by the local search region are accessed and tire 
vertices are retrieved ( Figure 5) 

-I lie triangulation of all vertices within the query 
region will not guarantee a coniplete II N coverage over 
that region I here may he situatu, n, where part of the 
query window is not covered. p: uuiularly to its corners 
where st t)elaunay edge crosses the wrnu�ww hut lath its 
vertices are outside ( Figure O Whencvet su. h an edge 
is fount), both its vertices are added it, the stack rd 
vertices to be triangulated Thus when the triangulation 
is complete, triangles will have been constructed nn loth 

sides of all stach edges (Figure 7) I his process intnoduves 
unreyuiretl edges, which can either he ret. rined or dtv 

carded Such Qn edge IS rtrsttnltuiýhcd freit Other algae 
by the [act that one (if its endpoints has ri neighhnur 
I lie Procedure is illustrated in Virtue X 

the second stage of tile triangular it'll plokew 1s to 
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within or intersect the current TIN (sec Procedure 

CONSTRAIN TRIANGULATION). Fach con- 

straining segment (A, B) can have one of five possihihties 

(i) A and B are both vertices within the TIN and form 

a [)claunay edge, (ill A and B are both vertices within 

the TIN with no connecting edge, (iii) either A or B is 

a TIN vertex whilst the other is external to the TIN, 

(iv) both A and It are external to the TIN, or (v) any of 

the cases (iii Iiv) but where the constraining edge passec 

through a hole or concavity in the triangulation The 

first two occurenccs are the most likely, but the prohabil- 

itie, of each will depend upon the sampling densitics of 

the elevation and object data In the first instance (r), 

the segment exists within the T-IN and therefore no 

update is necessary. In the other cases, the segment does 

not exist and therefore the TIN must be constrained 

(Figure 9) 

For case (ii), the procedure for inserting an edge 
constraint (A. 13) into the TIN consists of determining 

the current edges which are intersected by the constraint 
(I"igure9a). eliminating these edges (Figure 9b), 

re-triangulating around the new edge (figure 9c) and 

updating the TIN data structure It may he noted that, 

initially for case (n), there will always he one or more 

current edges that are intersected by the constraint (A, 13) 

since this region will have been triangulated initially as 

Published Papers 

it is within the original query window (nlhervise A or 
lt would he external). 'I he noblem of re 111ungulating 

around the constraining edge is reduced to that of 

separately triangulating the two polygons lorrned either 

side of the edge These polygons are sometimes refcrrrd 
to as the polygons of influence j 71 '1 lie triangulation 

of each polygon proceeds a% folllow% (omlder the edge 
(A. It) to be the base edge of the polygon I he Initial 

step Is to find the vertex O of the polygon. dlscliunling 

the vertices A and It, which subtends the Iargesl ankle 
t, - the base edge lot the topper hoIvgon to I gore Vital 

thu is vertex 5 11115 vertex is ldded I" the list of 

neighbours of both A and It. and suntlartu A and It 

become neigh hour'. ref vertex S Iwn sill, feiii lms h: nr 
now been formed Willi hate edge A. St and (S. 11) 

respectively (Figure 10h) the Iwo stub tv lsFm ns, and 
any subsequent sub-polygom, are dellt Willi. recursively. 
to the carne way as the longtnal hlelygun II rkures Ilk 

and (1) 1 lie recursion ceenunues until the Lotest new edge 

marches an edge Iit the anginal I IN 

I- or a constraining segment will, uni vertex In the 
I IN and a second outside, the procedure is %cn snnil. li. 
hol triangle edges may extend too voices eeutslir the 
original I IN For example, c mvder the m%cili 1n ý, l the 
highlighted segment (A. HI in I spure I Ital Ito' thl" 
search for the vertex with the taugest suhtrndrit angle 
must Include the vertices muklny uh the 1e dlsgim ich 
Influence (discounting A and It) plus all vritlccs whrrh 
: tic external to the TIN heut he within the Irlelugien of 
nlluence (Figure IIh) Searches invoking tills side 

scyuent sub-polygon raust In tide the sei lice'. making 
ill the sub-polygon Idlscuuntrng the hose edge serlurs) 
plus any vertex which is external to the IIN hill lies 
within the sub polygon the revulsive procedure' In tills 
case continue,, until either the latest edge matches an 
edge in the original 'I IN (it the latest edge falls to 
Intersect the original '1 IN (figure 110 

The fourth possible situation is where hlilh sauces of 
the constraining edge lie outside the tuitional [IN the 

procedure fur constrained edge Insertion Bellows that of 
the Imcrtuon of it constraining edge Willi ('lie rXICIIIA 
vertex (Logure 12) 

the Implicit TIN algorithm will somcumrs landurc 
triangulations containing holes due to triangles creesslng 
concave regions of a query window 1 kills the elgonlhm 
has been designed to handle quern wlndlews tllar are 
themselves concave tit shape or Include a hole 
Introducing a constraint which passes through such a 
hole or concavity can he catered for by using the 
methods for cases (iii) and (iv), as shown In I igure 

2.6. Restricted region triangulation 

It is noted that tr, aonptruct the Imphcu TIN Irr airs 
query, the algorithm rcqurres an initial vcrtct tu start 
the triangulation process In most cases an arhrlrarv 
vertex from within the query rcfrtrrn is choven II rwcver. 
to certain circumstances. no verttcc, he within the irrmal 
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u iangulated 
Region 

(a) Extemal Edge lntersecton. 

I 

(c) Removal of unmquired edges. 

FIGURE S. Test for complete coverage and resolution of completeness by triangulation of external vertices 

query window. This situation may arise if the query 
window is narrow or has no width as in the case of a 

profile. In such a case the initial vertex can be found in 

a number of ways. One method is to find the nearest 

neighbour of the centre of gravity of the vertices defining 

the query region. Another method is to search for 

straight line segments (constraints) belonging to linear 
features that cross the query window and to select one 
of their bounding vertices. This would have to act as a 
preliminary method in that it will of course only work 
if there is an intersecting constraint. Having found an 
initial vertex, the algorithm proceeds by finding its 
Thiessen neighbours and testing whether the connecting 
edge to each neighbour intersects the query window. If 
it does, then the neighbour is placed on a'to triangulate' 

stack. If no connecting edge crosses the window, 
another vertex in the vicinity must be selected and the 

procedure is repeated. Once a vertex of an intersecting 

triangle edge has been found, its neighbours across 
the window can be processed in the same way. All 

such opposite neighbour vertices are then processed. 
The remainder of the algorithm finds any unprocessed 
border triangles in the same way as in Procedure 
DELAUNAY_TRIANGULATL". The case where no 
intersecting edge exists, when the query region is com. 

pletely contained within a Delaunay triangle, is also 
catered for. This is achieved by simply finding the 
Thiessen neighbours of the vertex closest to the query 
region. One of the triangles thus formed will contain the 
query region. 

3. MULTISCALESTORAGE OF LINEAR 
FEATURES 

There are several published descriptions of multiresolu- 
tion schemes for representing lines. Examples of these 
are the strip tree [2]. the MSLT [1S. 16]. the Reactive 
Tree [23] and the Priority Rectangle (PR) File [3]. The 
original strip tree includes no facility for efficient spatial 
access and Is therefore not satisfactory for use in a large 
database. 

The MSLT does provide spatial indexing and it is 
intended for large databases. Like all of these schemes 
it uses a line generalization algorithm (that of Douglas 
and Peucker [8]) to simplify linear features. The algo. 
rithm is used to classify vertices of a line according to 
their scale significance or contribution to the shape of 
the line. A hierarchy is then constructed in which. at the 
top level, all vertices required to represent the line in its 
most simplified form are stored. At the next level are 
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FIGURE 9. Constrained edge insertion within a TIN. Insertion 

of a constraining edge AB involves finding existing edge% that 

intersect it (a). deletion of these edges (b) and re-triangulation to 

include AB as an edge in the triangulation (c). 

stored intermediate vertices which when added to those 

at the higher level would represent the line to a prespeci- 
fied lateral error tolerance. Subsequent lower levels 

provide further degrees of detail. Abraham [I] imple- 

mented several spatial indexing methods whereby each 
level of the hierarchy could be accessed on the basis of 
a specified spatial window. For a given level of detail all 
spatially relevant parts of the levels down to and includ- 
ing that level need to be accessed. The retrieved vertices 
are then reassembled to constitute the linear feature at 
the required resolution. The MSLT spatial indexing 

method subdivided vertices into rectangular cells, based 

on a quadtrec. The scheme carried a storage overhead 
due to the fact that each cell included boundary vertices, 
which were spatially located outside the cell's (spatial) 

extent. 
The Reactive Tree of van Oosterom [25] uses an 

R-Tree spatial index [12] to refer to the occurrence of 
linear features which are stored separately in a hierarch- 
ical (hut not spatially segmented) data structure, the 
BLG-tree, which provides access to the scale-classified 
vertices of the linear features. The BLG-tree is then 
traversed to the level of detail required. Efficiency of this 

approach is dependent upon required linear features not 
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FIGURE 10. Triangulation within a polygon around a 
constrained edge. The inserted edge forme the base of Iwo polygons 
to be triangulated IU. Triangulation of each polygon proceeds by 
selecting the vertex which sublinde the largest angle with the base 
edge (vertea S in b). Each new edge is treated recursively as a bete 

edge of a new polygon (c). Triangulation is completed to, each 
polygon when the edges from the selected vertex to the hose edge 

belong to the original triangulation Id). 

being greatly spatially extensive beyond the region or 
the spatial query window, since the ßLß-tree requires 
accessing the entire line which may subsequently be 
clipped to the area of interest. 

The PR File [3) is more closely related to the MSLT 
in that the vertices or linear features are separated into 
spatial units which are present at different levels of detail 
(or'priority'). It differs however in that the spatial units 
are minimum bounding rectangles of arbitrary subdivi. 
sions of the stored line and are indexed using an R-Tree 
related scheine. This reduces problems of boundary 
vertices, though the scheme appears complex to 
implement. 

In our application of the Implicit TIN we have 
adopted an approach which takes aspects of the MSLT 
and of the Reactive Tree in order to reference line 
features. Like the MSLT (and Becker er al. 's PR File) 
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(a) 

vertices not in nN. but lying wiiM n the 
polygon of influence we included In the 
sea" for Q. 

0010 

A 

(b) 
Dose edges do not inteneei the 
o igmal TIN. so recursive process 
is stopped. 

A 
(C) 

FIGURE 11. Insertion of an edle with one external vertex two test for explanation). 

(a) (b) 

FIGURE. 11.1 anion of an edge with two external vertices A and R (a) follows the procedure for Insertion of an edge with one interns) 
vertex. to result in the conxtrained triangulation (b). 

"ýB 

A 

(a) 

ý. 
(6) 

FIGURE 13. Insertion of an edge through a hole in the tnangulahon or & concave query window. Triangulation or the eon training edge 
AB la) continues within the polygons of influence until new base edges either belong to the original triangulation or do not intersect The query 

window (h shows the triangu lation of one aide of AB), 

vertices are classified into hierarchical levels. Since these 4. POLYGONS ANI) MULTISCALE LINEAR 

vertices may be a necessary part of the terrain model. FEATURES 

each level stores lists of the sequentially numbered line Storage or polygonal objects is achieved by subdividing 
vertex identifiers. The corresponding coordinates are each polygon into linear components representing their 
stored separately. The lists are not themselves spatially boundary. In doing so. it is possible to avoid unnecessary 
segmented. though their presence is referenced by the data duplication, since for a map entirely covered by 
quadtree spatial index. polygonal regions, all boundaries interior to the map 
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will belong to the two adjacent polygons which share 
the linear boundary. Provided that polygon representa- 
tions are reduced to lists of linear boundaries, the linear 
feature multiresolution storage scheme described in the 
previous section can be used. Multiscale representation 
of polygons can then be achieved by a combination of 
a polygonal object description which refers, for a particu- 
lar scale of representation. to the relevant linear compon- 
ents, and the multiresolution representation of the linear 
components themselves. Retrieval of a particular repres- 
entation is accompanied by a check for topological 
integrity of the polygon, which may have been violated 
by the line generalisation procedure. This is then cor- 
rected by inserting additional higher resolution vertices 
in the linear boundary representations (Figure 14). 

S. A MULTISCALE DATABASE 

In this section we describe the components of a multis- 
eale database which applies the Implicit TIN concept to 
the storage of points, lines, polygons, complex polygons 
and composite objects constructed from these spatial 
objects. All of these spatial objects are regarded as part 
of a terrain model, which we refer to as the topo- 
graphic surface. 

The objective in designing the database was to enable 
subsets of spatial objects that are part of a topographic 
surface to be retrieved at variab)? levels of detail deter- 
mined by the scale of the required output. The assump- 
tion is that for large scale (detailed) retrieval the 
geometry will be required at higher resolution than for 
small scale retrieval. It is also assumed that the actual 
objects retrieved will be required at larger scales and, 
furthermore, different types of object will be required 
according to the purpose of the retrieval. In a geological 
context, finer subdivisions of geological formations might 
be represented at larger scales along with classes of 
geological unit that were relevant to particular types of 
mineral exploitation. In the context of local government 
planning the boundaries of individual land parcels or 
planning regulation zones might be required along with, 
for example. the proposed path of new roads. 

All geometric objects in the database are defined in 
terms of component points. Individual points are identi- 

fled uniquely and may be regarded as belonging to both 
the terrain surface and any point or linear or polygonal 
features on the surface. When a point is inserted into 
the database it is allocated a level which characterizes 
its priority or scale significance. This priority is deter- 
mined by a combination of two factors. One is the 
importance in defining the geometry or the terrain 
surface and the other is in defining the geometry of any 
objects mapped onto the surface. Methods for determin- 
ing the priorities were described Section 2.1 and 
Section 3. 

Spatial objects representing phenomena mapped onto 
the terrain surface are viewed hierarchically. Thus point 
objects are defined geometrically simply by reference to 
a single vertex at a specified level; linear objects are 
defined by ordered lists of vertices which may occupy a 
specified range of levels; simple polygons are defined by 
lists of bounding linear objects; complex polygons are 
defined by lists of component simple polygons (a primary 
external bounding polygon and the internal bounding 
polygon, i. e. holes). higher level objects defining various 
real world phenomena are then defined in terms or the 
constituent points, lines or polygons. 

In the implemented database, all spatial objects and 
all component vertices are indexed by spatial location, 
using a quadtree directory, which is itself organised in 
levels corresponding to levels or storage of the geometric 
coordinate data. Each cell of the quadtree directory 
references the objects that intersect it. The number of 
objects per quadtree cell has been chosen somewhat 
arbitrarily as 5. The purpose of the experimental data- 
base is to provide a framework for demonstrating the 
multiscale Implicit TIN and no attempt has been made 
to optimise spatial indexing. It may be remarked how- 
ever that the quadtree indexing scheme is similar in 
principle to the PMR quadtree (21 ]. which has perform- 
ance characteristics that are competitive with other 
major alternatives [ 13 ]. 

Queries to the database are answered by accessing 
the level or levels appropriate to the specified 'scale' or 
resolution. At any given level, all objects from the 
coursest scale down to that level are recorded in the 
spatial index. Thus having entered the database at a 

Before ̀eneralsation. After genenlwtion " an Solmion Is to replace intenecbon of hie aetmen u appropriate point or poinm has occumd. 
FIGURE 14. Fxample of error which may occur duonft line simphficaiion and how the error is corrected 
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particular level, retrieval of the geometry for selected 

objects is achieved by accessing the range of levels from 

the highest recorded for the object down to the current 
level. Since adjacent quadtree cells may reference the 

same (non-raint) objects if they lie in both cells, it is 

necessary to keep a temporary index of already accessed 
objects for any particular query. in order to prevent 
duplicate retrieval of the associated geometry The TIN 

construction algorithm is applied to the combination of 

vertices and constraints retrieved for the specified spat- 

ial window 
The experimental database consists of a set of indexed 

tables with variable length records. An overview of the 
database tables is given in Figure 15, which we will now 

explain. The database represents the multiresolution 
topographic surface by it sequence of levels where the 

top level is the coarsest resolution and (lie hot loin is the 
finest resolution The Levels Table has an entry for each 

such level and records the level number, the maximum 
vertical terrain height error associated with the level and 
the maximum lateral (ground location) error associated 

with linear features which may be embedded within the 
level and hence constrain the triangulation 

There are two quadiree tables at each level of the 

database. The Object Quadtree Table records, for each 

quadtree cell. the list of the spatial objects (or features) 

that lie inside or intersect the cell. The PointQumidrrem 

1af le stores the point identifiers of the points that lie 

inside its respective quadtree cells The reason for main- 

taining separate 'object' and 'point' quadtrces is due to 

a distinction between real world objects with name and 

class attributes and the lower level point geometry used 

to describe the objects Many points will rnlN he used 

11 k 

for describing the ground surface and will not be part 
of the boundary of objects mapped onto that surl, rce 

The Point 7ubles, of which there is one for each level 

of the database, steife, for each vertex, its point ruentiher 
and x, t and z coordinates Vertices that nieline linear 
features that are not regarded as essential to dclinurk 
the form of the terrain model are assigned a null z v; rlur 
When combined with terrain Li, rta their z cueuelrnatrt 
are inferred from the terrain elevation data 

The Ohjerr Tables, of which there is one for each level 

of the database, have an entry for each object at the 
corresponding level referred to in the Object Ouadtree 
Iahles Oh)rcts may he composed of polygons, linear 
features and point features, The data items for cadt 
object are its 'real world' classification and lists of 
references to its component polygon, line ; und point 
features Note that Point objects refer directly to the 
Point 'fahle where the coordinates are stirred Clearly 
tip to two of these lists could he empty if It consisted of 
only one type of spatial geometry 

l he Polygnu Feature Tables, with one table per data 
base level, store the polygon identifier and u list of the 
identifiers of the linear features which compose the 
polygon 

I he Linear feature l ahlrs, again with one per level 
of the database, contain the linear feature ufentitict, the 
highest level of the database in which it is referenced 
and a list of the point identifiers and their sequence 
numbers within the line Fach such fahle only %tore% 
the identifiers of the vertices which are introduced at 
that level t hits to onstruct it linear feature at a given 
level, it is necessary to access all Linear f raturr I: rhlrs 

Ewes l abk 
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from the highest level of occurrence down to the cur- 
rent level. 

The Triangle Table is used to record the form of 
explicit triangulations stored temporarily as a result of 
triangulating the Implicit TIN. It records for each tri- 
angle, the triangle identifier, the Point identifiers of its 
three vertices, and attribute identifiers that may be 
associated with the triangle. Such attribute identifiers 
are assumed to be obtained by the triangle taking on 
the classification-related properties of any polygons of 
which it is a member. 

5.1. An application to geological data 

Figure 16 shows the Implicit TIN output produced when 
the algorithm described in Section 2 is applied to a small 
implementation of the database design described in 
Section 5, using an L-shaped query region. The test 
database consists of 20 objects comprised of 13 geolo- 
gical outcrop regions and seven geological faults. The 
outcrop regions arc defined by 20 polygons, while there 
arc a total of 143 linear features used to define these 
polygons and the fault lines. The terrain surface is 
defined by 612 points, while the constraining features 

are defined by 967 points. The quadtree cells have a 
maximum of five objects and five points per cell, respect- 
ivcly, for the two types of quadtree. Two levels of detail 
arc shown to illustrate the differences in the amount of 
data relevant to each level. The first level (Figure 16a 
and b) was created with vertical and horizontal toler- 
ances of 10 m, while the second, more detailed level was 
created with vertical and horizontal error tolerances of 
5m. There are 45 retrieved points (14 for the terrain 
elevation and 31 for the linear constraints) for the query 
window at the first level and 77 points (21 terrain and 
56 linear constraints) at the second level. For each or 
the two levels, a complete triangulation of the corres- 
ponding part of the database is also shown (created 
using the conventional constrained Delaunay triangula- 
tion algorithm of Dc Floriani and Puppo [7]). There 

are 891 points in the more detailed representation (part 
of which is shown in Figure 16d) and 587 in the less 
detailed one (Figure 16b). Inspection of Figure 16 shows 
that the Implicit TIN produces the same triangles as 
those in the conventional TIN. 

5.2. Database performance issues 

One of the major advantages that an Implicit TIN 
system holds over an explicit TIN system is the saving 
in storage space. The Implicit TIN database scheme, 
described here, when compared to an equivalent explicit 
TIN database using triangle adjacency pointers, has an 
approximate storage saving of 

i 12N, -6B, -12 
1-o 

where there are (m + 1) levels in the database and a total 
of N, points (from elevation and linear features) in the 

reconstructed TIN at level I. B, of which are boundary 
points. The assumption is that the explicit TIN database 
stores multiple versions or the triangulations. I. e. one for 
each of the m+1 levels. Storage costs for the explicit 
scheme include an additional element proportional to 
3N to represent coordinates of the points or 4N if we 
assume that a unique point identifier is also stored for 
each point. Further storage is required for the definition 
of objects in terms or their geometry. If the object 
definitions are stored as lists or point identifiers and 
their sequence numbers, an aproximate upper limit on 
the storage required would be IN. Thus SN is an 
estimate of the storage required in addition to triangula- 
tion topology pointers. For the Implicit TIN there is no 
triangulation topology, other than constraints, thus SN 
is a measure of the storage costs for this scheme., 
Regarding the size of B,, it is determined here by the 
number of points on the convex hull and remains a 
constant for all levels of representation. It is usually 
small compared with N. Thus for a single level of storage 
the triangulation topology approximates to 12N and the 
relative size of the Implicit and Explicit TIN scheme is 
in the ratio 5/17. As the number of levels increases, the 
overheads for the explicit scheme increase significantly. 
Taking the example of five levels of storage each of 
which involved a reduction in the number of points by 
two-thirds, the overhead would amount to about 30% 
of that of the of most detailed level, i. e. in proportion to 
6N. In this case the ratio of storage between Implicit 
and explicit schemes would be 5/23. 

lt is important to note that storage saving is not the 
only justification for using the Implicit TIN. The 
approach provides flexibility in integrating selected topo- 
graphic features with a terrain model at user-specified 
levels of detail. Thus the constraints introduced by the 
selected topographic features are not predetermined, as 
they would be in a stored constrained explicit TIN. 

The usefulness of the Implicit TIN will depend, for 
many applications, on the ability to reconstruct the 
correct constrained Delaunay triangulation for a given 
query region within a satisfactory time, the length of 
which will relate to the specific needs of the particular 
application. The major time penalty introduced by the 
Implicit TIN system is that of having to reconstruct the 
constrained Delaunay triangulation from the main 
memory data. The reconstruction algorithm currently 
used in the system has a worst case time complexity of 
O(N log N), where N is the number of points (elevation 
and linear feature data) to be triangulated. This repres. 
ents an upper bound on time for any serial Delaunay 
triangulation algorithm (constrained or unconstrained), 
although some parallel algorithms improve on this, with O(log N) reported by ElGindy [9]. Early experimental 
results indicate that a satisfactory reconstruction time is 
achieved. For example, the CPU time taken to produce 
the triangulation shown in Figure 16(c) is less than 
250 ms. 
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FIGURE 16. (a) and (c) show the triangulations produced by the Implicit TIN algorithm when applied to two levels in a muhncale 

geological database; 01 and (d) are the triangulations for the some area produced using a conventional triangulation alponthm. 

6. CONCLUSIONS AND DISCUSSION 

The implicit TIN is a space-efficient triangulated data 

storage scheme that has considerable potential for rep- 
resenting topographic surfaces in a multiscalc database. 
For the purposes of representing only elevation data it 

can provide a highly compact storage scheme. By classi- 
fying vertices according to their scale-related priority, it 

can be combined with a multiscale representation of 
geographical objects defined by polygons, lines and 

points, which are embedded in, and act as constraints 
on, the triangulation of the elevation model. The vertices 

defining these objects are themselves classified according 
to their scalc-related priority, allowing them to be 
combined selectively with the elevation data when a 
particular scale or representation is required. A scale of 
representation can be defined at least partially by the 
vertical error tolerance associated with the elevation 
model vertices and the lateral error tolerance or any 
additional features. 

Retrieval of an explicit triangulation requires applying 
a constrained triangulation algorithm to the terrain and 
associated objects relevant to the spatial query window. 
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Execution of the algorithm inevitably introduces a time 

overhead in retrieval from the database. Whether this is 

acceptable will depend on the application. Having built 

a model from the database components it is envisaged 
that it will be retained at least temporarily for purposes 
of analysis and visualization. How long it is worth 
retaining a triangulated model will depend upon the 
time taken to create it. Clearly actual retrieval times will 
depend on the quantity of data and the speed of execu- 
tion. The introduction of parallel processing methods to 
triangulation can be expected to improve performance 
in the future [9,26]. 

The major benefits of the approach are the storage 
efficiency and the flexibility it gives in integrating relev- 
ant topographic features with a digital elevation model 
at user specified scales. 

M ultiscale databases for geographical information sys- 
tems raise many challenging issues relating to the integ- 
ration of data of different quality from different spatial 
models and to the automated generalization of the 
retrieved data. 

When several spatial objects are retrieved and integ- 
rated in a model which is at a smaller scale than that of 
the original data, major problems can arise in visualising 
the model such that its components arc clearly repres. 
ented and distinguishable. This requires symbolizing the 
original geometry in ways that may involve simplifica- 
tion, exaggeration and change in location, all of which 
are aspects of cartographic generalization. Such general- 
ization operations may be applied to data following 
retrieval from a multiscale database. 

Update of a multiscale database is potentially a com- 
plex process in that, for any given spatial region, new 
data may be at different levels of detail from that already 
stored [ 14]. If the source scale of new data is the same 
as existing data the new data may replace the old, unless 
a temporal record is required. If it is more detailed it 
might replace existing data, though if the new, more 
detailed data were highly localized, relative to existing 
data, it might be appropriate to maintain it additionally, 
without replacement. Likewise, less detailed data might 
also be maintained additionally if it provided a poten- 
tially useful generalization, perhaps over an extensive 
region. Such multiple representation is particularly relev- 
ant if there are no satisfactory automatic means for 
generalizing the data. 

The multiscale database described in this paper is 
applicable to the storage of spatial objects that are 
defined in terms of their original surveyed geometry, or 
simple subsets of it. This is currently applicable, but full 
exploitation of the multiscale database will depend on 
the implemention of more advanced update and general. 
ization procedures that enable data from multiple source 
scales to be integrated and to undergo major generaliza. 
tion transformations on retrieval. 
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