
www.manaraa.com

MULTI-SCALE DATA STORAGE SCHEMES

FOR

SPATIAL INFORMATION SYSTEMS

John Mark Ware

Department of Computer Studies

A thesis submitted in partial fulfilment of the requirements of the
University of Glamorgan/Prifysgol Morgannwg for the degree of

Doctor of Philosophy.

This thesis programme was carried out in collaboration

with the British Geological Survey.

April1994

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

27706172

27706172

2019

www.manaraa.com

Table of Contents

Table of Contents

Table of Contents

Table of Figures and Plates

Acknowledgements

Declarations

Abstract

Project Introduction
1.1 Introduction
1.2 Background
1.3 Aims of Project
1.4 Thesis Outline

2A Review of GIS Data Structures
2.1 Introduction
2.2 Geographic Data
2.3 Data Structures for Topographic Data

2.3.1 A Simple Storage Scheme
2.3.2 An Improved Data Structure
2.3.3 Topological Data Structures

2.4 Data Structures for Terrain Data
2.4.1 The Regular Rectangular Grid
2.4.2 The Triangulated Irregular Network
2.4.3 The Delaunay Triangulation

2.4.3.1 Defining the Delaunay Triangulation
2.4.3.2 Data Structures for Storing TINs
2.4.3.3 Constructing a Delaunay Triangulation

2.4.4 Constrained Delaunay Triangulation
2.5 Summary and Conclusions

3 Efficient Access to Spatial Data
3.1 Introduction
3.2 The Need for a Spatial Access Data Structure
3.3 Spatial Access Data Structures

3.3.1 The Fixed Grid
3.3.2 The Quadtree
3.3.3 The R-tree
3.3.4 The Grid File

3.4 Summary and Conclusions

4 Multiresolution Representation of Spatial Data
4.1 Introduction
4.2 Generalisation and Scale

4.2.1 Generalisation Operations
4.2.2 Automated Generalisation
4.2.3 Automated Line Simplification

4.2.3.1 Algorithm Overview

ii

vi

x

xi

xiii

1
2
2
4
6

8
9
9
10
10
11
12
14
15
15
16
16
17
18
20
21

23
24
24
24
25
27
33
36
37

38
39
39
39
39
40
41

li

www.manaraa.com

Table of Contents

4.2.3.2 The Douglas-Peucker Algorithm
4.2.4 Representing Line Data at Multiple Scales

4.2.4.1 The Line Generalisation Tree
4.2.4.2 The BLG-tree

4.3 Hierarchical Surface Models
4.3.1 Ternary and Quaternary Triangulations
4.3.2 Error-Directed Point Selection
4.3.3 The Delaunay Pyramid
4.3.4 Adaptive Hierarchical Triangulation
4.3.5 The Constrained Delaunay Pyramid

4.4 Summary and Conclusions.

5A Multiresolution Topographic Surface Model
5.1 Introduction
5.2 A Hierarchical Model for both Topographic

and Terrain Data
5.2.1 Model Overview
5.2.2 Providing Spatial Access to the Model

5.2.2.1 The Regular Grid Overlay Indexing Method
5.2.2.2 A Discussion Concerning Spatial Indexing

5.2.3 The Selection of Critical Points
5.3 An Algorithm for Building the Hierarchical Model
5.4 Justification for Using the Douglas-Peucker Algorithm
5.5 Limitations of the MTSM.
5.5 Summary and Conclusions

6 System Implementations
6.1 Introduction
6.2 A Prototype Relational Database Implementation

- MTSD 1.0
6.2.1 Database Description
6.2.2 The Core Libraries

6.2.2.1 Data_Retrieval Library
6.2.2.2Data Transfer Library
6.2.2.3 Geometry Library
6.2.2.4 Triangulation Library
6.2.2.5 Output Library

6.2.3 An Implementation Issue
6.2.4 Database Retrieval and Update
6.2.5 Testing MTSD 1.0

6.3 A Prototype ISAM Database Implementation - MTSD 2.0
6.3.1 Database Description
6.3.2 Database Retrieval and Update
6.3.2 Testing MTSD 2.0

6.4 Summary and Conclusions

7 The Implicit TIN
7.1 Introduction
7.2 Motivation for the Implicit TIN
7.3 The Original Implicit TIN
7.4 An Improved and Constrained Implicit TIN

7.4.1 Database Design
7.4.2 The Implicit TIN Algorithm
7.4.3 Triangulating within a Restricted Region
7.4.4 Implicit TIN Flexibility

42
43
44
45
46
46
49
50
52
52
52

54
55
55

55
59
59
61
62
63
66
67
68

69
70
70

72
73
73
73
74
74
74
74
75
75
82
83
83
84
85

87
88
88
88
89
89
90
102
103

Ui

www.manaraa.com

Table of Contents

7.5 The Implicit TIN in a Multiresolution Environment 104
7.5.1 Database Design and Construction 104
7.5.2 A Geological Application 106

7.6 Performance of the Implicit TIN 108
7.7 Summary and Conclusions 110

8A Multi-Scale Geological Model 111
8.1 Introduction 112
8.2 An Introduction to Geoscientific Information Systems 112

8.2.1 The BGS Project 112
8.2.2 Basic Requirements of a GSIS 113

8.3 The Spatial Modelling of 3-D Objects 114
8.3.1 Modelling 3-D Objects 115

8.3.1.1 Boundary Representations 116
8.3.1.2 The Octree 117

8.3.2 Spatial Indexing Techniques 118
8.3.2.1 A Fixed 3-D Grid 118
8.3.2.2 The Octree 119
8.3.2.3 The R-tree 119
8.3.2.4 The Grid File 119

8.4 A Multi-Scale 3-D Model 120
8.4.1 A Review of the 2-D Data Model 120
8.4.2 Extending the 2-D Design into 3-D 120
8.4.3 A Prototype Multi-Scale 3-D Model 122

8.4.3.1 A Description of the Data to be Modelled 122
8.4.3.2 Model Description 123

8.4.4 Model Creation 124
8.4.4.1 Ground Surface Triangulation 125
8.4.4.2 Triangulation of the Subsurface 125
8.4.4.3 Including Faults in the Model 128
8.4.4.4 Creating the Multi-Scale Model 130

8.5 Summary and Conclusions 131

9AM ulti-Scale Geological Database 133
9.1 Introduction 134
9.2 Database Description and Creation 134

9.2.1 Primary Files 134
9.2.2 Quadtree Initialisation 137
9.2.3 Generalisation of Outcrop Objects 138
9.2.4 Creation of Constrained Delaunay Pyramids 139

9.3 Database Retrieval and Update 140
9.4 Testing the MGD System 141
9.5 Problems and Discussion 154

9.5.1 Coping with Multi-Valued Surfaces 154
9.5.1.1 Data Segmentation 155
9.5.1.2 Computing the 3-D Delaunay Tessellation 156

9.5.2 3-D Spatial Conflict 156
9.5.2.1 Conflict due to Data Set Discrepancies 156
9.5.2.2 Conflict due to Generalisation 158
9.5.2.3 Conflict due to Incorrect Insertion 159

of Constraints
9.6 Summary and Conclusions 161

10 Thesis Summary and Conclusions 162
10.1 Introduction 163

iv

www.manaraa.com

Table of Contents

10.2 Project Summary and Achievements 163
10.2.1 Combining Terrain and Topographic Data at 163

Multiple Scale
10.2.2 Combining Geological Data Types at Multiple 165

Scale
10.3 Future Work 166

10.3.1 Scale and Generalisation 166
10.3.2 The Modelling of 3-D Objects 169

10.4 Final Remarks 170

References 171

Appendix 1- Line Generalisation and Spatial Conflict Al-1
A1.1 The Introduction of Spatial Conflict as a Result Al-2

of Line Generalisation
A1.2 Detecting Spatial Conflict Al-4
A1.3 Re-establishing Topological Integrity Al-4

Appendix 2- Core Library Functions A2-1
A2.1 Data_Retrieval Library A2-2
A2.2 Data Transfer Library A2-3
A2.3 Geometry Library A2-3
A2.4 Triangulation Library A2-4
A2.5 Output Library A2-4

Appendix 3- Published Papers A3-1
A3.1 Jones, C. B., Ware, J. M. and Bundy, G. Ll 1992 A3-2

"Multi-scale spatial modelling with triangulated surfaces"
Proceedings of the 5th International Symposium on
Spatial Data Handling, Volume 2, pages 612 - 621.

A3.2 Ware, J. M. and Jones, C. B. 1992
"A multiresolution topographic surface database"
The International Journal of GIS, Volume 6, Number 6,
pages 479 - 496.

A3.3 Jones, C. B, Kidner, D. B. and Ware, J. M. 1994
"The Implicit TIN and multi-scale spatial databases"
The Computer Journal, Volume 37, Number 1,
pages 43 - 57.

A3-12

A3-30

V

www.manaraa.com

Table of Figures and Plates

Table of Figures and Plates

Figure 1.1 The main functions of a GIS. 2

Figure 2.1 A simple method for storing topographic feature data 11
Figure 2.2 Some of the disadvantages of the simple method for 11

storing data.
Figure 2.3 The point dictionary method. 12
Figure 2.4 Polygon map stored as a chain file with descriptive 13

data stored separately.
Figure 2.5 The TIGER structure. 14
Figure 2.6 The Regular Rectangular Grid. ' 15
Figure 2.7 Delaunay triangulation around a point p. 17
Figure 2.8 Nine possible relations between pairs of entities 18

in a TIN.
Figure 2.9 Illustration of the nine possible relations between 19

pairs of entities in a TIN.
Figure 2.10 Inserting a point into a Delaunay triangulation. 20
Figure 2.11 Inserting a line segment into a constrained Delaunay 21

triangulation.

Figure 3.1 Conventionally stored point data. 25
Figure 3.2 Storage of point data using a fixed grid. 26
Figure 3.3 The region quadtree. 28
Figure 3.4 The PM quadtree. 30
Figure 3.5 A Peano space-filling curve. 31
Figure 3.6 A linear quadtree. 32
Figure 3.7 Two quadtree cells which cannot be distinguished 33

without the level number being stored.
Figure 3.8 An example R-tree. 34
Figure 3.9 Searching for objects in a query window. 35
Figure 3.10 The grid file. 36

Figure 4.1 The six main generalisation operations. 40
Figure 4.2 The criteria used in Jenks' line simplification 42

algorithm.
Figure 4.3 The Douglas-Peucker algorithm applied to a line. 43
Figure 4.4 The Line Generalisation Tree. 45
Figure 4.5 A line and its corresponding BLG-tree. 46
Figure 4.6 A ternary triangulation and its corresponding 48

ternary tree.
Figure 4.7 A quaternary triangulation and its corresponding 49

quaternary tree.
Figure 4.8 An illustration showing the inter-level relationships 51

that exist in the Delaunay pyramid.

Figure 5.1 The multiresolution topographic surface model. 57
Figure 5.2 A single-scale topographic data model, made up from 58

object, line and point entities.
Figure 5.3 Spatial indexing provided by the regular grid overlay 60

method.
Figure 5.4 The MTSM algorithm. 64
Figure 5.5 A procedure to create a level in a CDP. 65
Figure 5.6 Catering for intersecting constraining edges. 66

vi

www.manaraa.com

Table of Figures and Plates

Figure 6.1 The relational database implementation (MTSD 1.0). 71
Figure 6.2 The MTSD 1.0 procedure for retrieving the values 73

associated with a particular point.
Figure 6.3 Database creation performance table for MTSD 1.0. 77
Figure 6.4 Results of comparison tests between MTSD 1.0, 81

generalisation at run-time and multiple representation.
Figure 6.5 The MTSD 2.0 procedure for retrieving the 82

values associated with a particular point.
Figure 6.6 Database creation performance table for MTSD 2.0. 84
Figure 6.7 Results of comparison tests between MTSD 2.0, 85

generalisation at run-time and multiple
representation.

Plate 6.1 Terrain points (380) forming part of test data set. 76
Plate 6.2 The test outcrop data consisting of 20 objects 76

(20 polygons, 143 lines and 896 points).
Plate 6.3 Database 3, level 1. Plan view. 78
Plate 6.4 Database 3, level 1. Shaded, perspective view. 78
Plate 6.5 Database 3, level 2. Plan view. 79
Plate 6.6 Database 3, level 2. Shaded, perspective view. 79
Plate 6.7 Database 3, level 3. Plan view. 80
Plate 6.8 Database 3, level 3. Shaded, perspective view. 80

Figure 7.1 Overview of the single-scale database. 90
Figure 7.2 Quadtree addresses used to access relevant 91

points and objects.
Figure 7.3 Elevation and edge points stored in box-sort structure. 91
Figure 7.4 The procedure to carry out Implicit Delaunay 92

triangulation.
Figure 7.5 The procedure to find the Thiessen neighbours 94

of a point.
Figure 7.6 Retrieving data from database during triangulation. 95
Figure 7.7 The triangulation of all vertices within a query region. 96
Figure 7.8 The final Delaunay triangulation of the query region. 96
Figure 7.9 Test for complete coverage and resolution of 97

completeness by triangulation of external vertices.
Figure 7.10 The procedure to implicitly constrain a Delaunay 98

triangulation.
Figure 7.11 Constrained edge insertion within a TIN. 99
Figure 7.12 Triangulation within a polygon around a constrained edge. 100
Figure 7.13 Insertion of edge with one external vertex. 101
Figure 7.14 Insertion of edge with two external vertices. 102
Figure 7.15 Insertion of an edge through a hole in the triangulation. 102
Figure 7.16 Overview of the multi-scale database. 105
Figure 7.17 Output from I_MTSD. 107
Figure 7.18 Results of comparison tests between I_MTSD 109

and MTSD 2.0.
Figure 7.19 Results of comparison tests between I MTSD 110

and MTSD 2.0.

Figure 8.1 The basic components of s 3-D GIS. 113
Figure 8.2 A boundary representation for a rectangular pyramid. 116
Figure 8.3 The object-space recursively subdivided into octants to 117

form an octree.
Figure 8.4 The explicit tree corresponding to Figure 8.3. 117
Figure 8.5 A single level in the multi-scale geological model. 123

vii

www.manaraa.com

Table of Figures and Plates

Figure 8.6 Assigning outcrop boundaries to their correct 126
subsurface horizon.

Figure 8.7 Unwanted triangles created during triangulation of 127
the subsurface.

Figure 8.8 The dip, throw and depth of a fault. 128
Figure 8.9 Projecting a fault onto a subsurface. 129
Figure 8.10 Modelling the throw of a fault. 130

Figure 9.1 The multiresolution geological database (3 levels). 135
Figure 9.2 The Primary Files. 136
Figure 9.3 Database creation performance results for MGD. 143
Figure 9.4 Results of comparison tests between MGD, 143

generalisation at run-time and multiple representation.
Figure 9.5 The effect of triangulating on different planes. 154
Figure 9.6 Spatial conflict due to a data discrepancy. 157
Figure 9.7 A second error due to a data discrepancy. 158
Figure 9.8 Insertion of dummy point to restore integrity. 158
Figure 9.9 Conflict due to generalisation. 159
Figure 9.10 The effect of forcing the ground surface to conform to 160

outcrop region object constraints.
Figure 9.11 The insertion of a surface conforming constraint. 161

Plate 9.1 The distribution of terrain data (380 points) 141
Plate 9.2 The outcrop data, consisting of 20 objects (13 outcrop 142

regions and 7 faults).
Plate 9.3 The distribution of boreholes (81). 142
Plate 9.4 Database 3, level 1 ground surface triangulation. Plan view. 144
Plate 9.5 Database 3, level 1 ground surface triangulation. Shaded, 144

perspective view.
Plate 9.6 Database 3, level 1 LLL triangulation. Plan view 145
Plate 9.7 Database 3, level 1 LLL triangulation. Shaded, perspective view. 145
Plate 9.8 Database 3, level 1 GRF triangulation. Plait view. 146
Plate 9.9 Database 3, level 1 GRF triangulation. Shaded, perspective view. 146
Plate 9.10 Database 3, level 1 NS triangulation. Plane view 147
Plate 9.11 Database 3, level 1 NS triangulation. Shaded, perspective view. 147
Plate 9.12 Database 3, level 1 subsurface triangulations. 148
Plate 9.13 Database 3, level 1 all triangulations. 148
Plate 9.14 Database 3, level 3 ground surface triangulation. Plan view. 149
Plate 9.15 Database 3, level 3 ground surface triangulation. Shaded, 149

perspective view.
Plate 9.16 Database 3, level 3 LLL triangulation. Plan view. 150
Plate 9.17 Database 3, level 3 LLL triangulation. Shaded, perspective view. 150
Plate 9.18 Database 3, level 3 GRF triangulation. Plan view. 151
Plate 9.19 Database 3, level 3 GRF triangulation. Shaded, perspective view. 151
Plate 9.20 Database 3, level 3 NS triangulation. Plan view. 152
Plate 9.21 Database 3, level 3 NS triangulation. Shaded, perspective view. 152
Plate 9.22 Database 3, level 3 subsurface triangulations. 153
Plate 9.23 Database 3, level 3 all triangulations. 153

Figure 10.1 The generalisation of a geological map which includes 168
en echelon faults. Such generalisation is only applicable
to geological data.

Figure A1.1 Self-crossing as a result of generalisation. A1-2
Figure A1.2 Co-incidence as a result of generalisation. A1-2
Figure A1.3 Neighbouring lines intersecting following A1-3

viii

www.manaraa.com

Table of Figures and Plates

simplification.
Figure A1.4 Neighbouring lines becoming co-incident. A1-3
Figure A1.5 Overlapping polygons. A1-3
Figure A1.6 A flat polygon. A1-3
Figure A1.7 A spike introduced as the result of simplification. A1-4
Figure A1.8 Generalisation has resulted in self-crossing. A1-5
Figure A1.9 Restoring spatial integrity by arbitrarily choosing points Al-6

for reinsertion.
Figure A1.10 A selection of hand generated occurrences of self-crossing. A1-7
Figure A1.11 Spatial integrity restored in each case by guessing at the A1-8

best point to insert.
Figure A1.12 An algorithm for restoring spatial integrity. Al-10

ix

www.manaraa.com

Acknowledgements

Acknowledgements

I would like to give my unreserved thanks to my Director of Studies, Dr. Chris Jones, for
his continual help and encouragement throughout the course of this research. I am also
indebted to the advice and support given to me by my secondary supervisors, Dr.
Robert Davies and Dr. Graham Tough.

I would also like to acknowledge the support given by the British Geological Survey,
Keyworth. In particular I would like to thank Dr. John Rees, Mr. Konrad Dabek and Mr.
Keith Ambrose for many helpful discussions and other assistance provided during the

course of the project.

Thanks are also due to the many members of staff at the University who have

supported my research. In particular I wish to thank my fellow researchers, Dr. David
Kidner and Mr. Geraint Bundy.

x

www.manaraa.com

Declarations

Certificate of Research

This is to certify that, except where specific reference is made, the work presented in
this thesis is the result of the investigation undertaken by the candidate.

Candidate

Director of Studies
eý.

`
......................

xi

www.manaraa.com

Declarations

Declaration

This is to certify that neither this thesis or any part of it has been presented or is being

currently submitted in candidature for any degree other than the degree of Doctor of
Philosophy of the University of Glamorgan.

Candidate
............

xii

www.manaraa.com

Abstract

Multi-Scale Data Storage Schemes
for

Spatial Information Systems

John Mark Ware

The University of Glamorgan

Abstract

This thesis documents a research project that has led to the design and prototype
implementation of several data storage schemes suited to the efficient multi-scale
representation of integrated spatial data. Spatial information systems will benefit from
having data models which allow for data to be viewed and analysed at various levels

of detail, while the integration of data from different sources will lead to a more
accurate representation of reality.

The work has addressed two specific problems. The first concerns the design of an
integrated multi-scale data model suited for use within Geographical Information
Systems. This has led to the development of two data models, each of which allow for

the integration of terrain data and topographic data at multiple levels of detail. The

models are based on a combination of adapted versions of three previous data

structures, namely, the constrained Delaunay pyramid, the line generalisation tree and
the fixed grid.

The second specific problem addressed in this thesis has been the development of an
integrated multi-scale 3-D geological data model, for use within a Geoscientific

Information System. This has resulted in a data storage scheme which enables the

integration of terrain data, geological outcrop data and borehole data at various levels

of detail.

The thesis also presents details of prototype database implementations of each of the

new data storage schemes. These implementations have served to demonstrate the
feasibility and benefits of an integrated multi-scale approach.

The research has also brought to light some areas that will need further research before
fully functional systems are produced. The final chapter contains, in addition to

conclusions made as a result of the research to date, a summary of some of these areas
that require future work.

Xlii

www.manaraa.com

Chapter 1

Project Introduction

www.manaraa.com

Chapter 1

1.1 Introduction.

Project Introduction

This chapter serves as an introduction to the thesis. Section 1.2 provides a brief

overview of Geographic Information Systems, and their 3-D counterpart Geoscientific
Information Systems. The thesis is primarily concerned with the data models on which
such spatial information systems are based. Therefore, early mention is made of the

types of data which need to be accommodated by these spatial data models. Some of
the limitations of current data models are discussed in Section 1.3, with particular
regard to the problem of multi-scale data access. The aims of the project, which are to

overcome some of these limitations, are also outlined. The chapter concludes with an
overview of the rest of the thesis.

1.2 Background.

Many definitions have been given in the literature to describe what constitutes a
Geographic Information System (GIS), some of which are included in Maguire [1]. In

summary, a GIS can be thought of as a computer system that can acquire, store,
update, process and display geographical (that is, spatially referenced) data (Figure

1.1).

DATA

THE WORLD GEOGRAPHICAL
DATA UPDATE

MODEL

DISPLAY

PROCESS

Figure 1.1 The main functions of a GIS.

GIS development began in the 1960s with one of the earliest known implementations
being the Canadian Geographic Information System, which was used to assist in urban
planning. GIS research and development continued throughout the 1970s and 1980s,

and today a wide variety of commercial systems are available. Among the best known

are ARC-INFO (ESRI), INTERGRAPH (Intergraph) and SPANS (Tydex Technology
Ltd.). These, and other, systems have found a wide range of use in application areas
which include environmental resource management, emergency planning and routing,
monitoring the built environment (in particular, the utilities industries), market analysis,

2

www.manaraa.com

Chapter 1 Project Introduction

and population analysis and prediction. The main function of a GIS, like any other
information system, is to improve decision making in areas such as research, planning
and management. Decision making is aided by means of the spatial analysis functions

available within the GIS. In modern GIS these functions include choropleth mapping,
buffer generation, polygon overlay, contouring, network analysis, and area and length

calculations.

GIS differ from other types of information system in that they deal primarily with
geographic data. This data is characterised by the fact that it is related to a specific
location in space. Geographic data can, in the simplest case, be regarded as the digital

representation of the information which appears on a conventional map. This data
falls into two categories, namely, spatial data and attribute (non-spatial or aspatial)
data. Spatial data is used to represent the form and location of objects which appear
on the map, such as trees, houses and rivers. Non-spatial data consists of
alphanumeric attribute information which describes, in some way, a particular spatial
data item, or group of items (for example, the name of a river). Spatial data exists in

one of two formats, either vector format or raster format. Vector data defines map
objects by means of an x, y coordinate or string of coordinates which refer to object
locations and, particularly, boundaries, within a specific spatial referencing system.
This format provides flexible and accurate representation. Raster defined data is

expressed as an array of pixels which categorise the contents of space on the basis of
regular fixed size cells. The resolution of objects is therefore limited to the resolution of
the pixel array. This thesis deals primarily with the vector format, the reason for which
is described in Chapter 2.

GIS typically deal with large volumes of data. The means by which data is stored is

therefore of great importance, with efficiency, both in terms of storage space used and
data retrieval performance, being a major objective. This thesis is primarily concerned

with the design of the underlying spatial data models on which GIS data storage
schemes are based. When considering the design of such data models there are a

number of considerations to be kept in mind. The first is that the spatial functions

which perform operations on the stored data are usually only concerned, at any one
time, with spatially specific subsets of the complete data set. The second issue to

consider is that of scale, and the fact that the scale at which data is required is usually
dependent on the particular application for which it is being used. It is also important

to understand that geographic data comes in a variety of forms and represents many
different types of geographic entity.

Attribute data and spatial data, which have already been mentioned, are usually
stored separately. At present, the relational database approach is being adopted by

many commercial systems to provide a convenient means of storing attribute data. The

3

www.manaraa.com

Chapter 1 Project Introduction

data storage schemes adopted for the storage of spatial data tend to be specifically
designed for particular data types. Two types of spatial data of importance to this
thesis are topographic data and terrain data. Topographic data can itself be broken
down into three sub-types, namely, point data, line data and polygon data. These sub-
types are combined in a variety of ways to form topographic features corresponding to
the real world phenomena which appear on a map. Terrain data, as far as this thesis is

concerned, refers to a collection of points, each with a height value associated with it,

which when joined together in a particular way forms an approximation to the true

ground surface (that is, a digital terrain model). Data structures suited to the storage of
spatial data are reviewed in Chapters 2,3 and 4.

An application area which makes wide use of GIS is that of geology. However, GIS are
limited in that they do not offer true 3-D modelling facilities. This is a serious limitation
in that geology concerns itself, in the main, with 3-D data. This data comes from a

variety of sources, including, well logs, seismic surveys, and gravity and magnetic
studies. Data is also made available by the digitising of existing interpreted data, such

as contours, cross-sections and outcrop maps. Geological modelling usually involves
large volumes of data. Until recently the computer technology available to the majority
of the geological community could not cope with such volumes of data. Memory costs
were too expensive, computational speeds too slow and graphical displays too low a

resolution [2]. During the late 1980s modern workstation technology, which to some
extent overcomes these problems, has become available. Today, the research and
development of 3-D GIS, or Geoscientific Information Systems (GSIS) as they are
commonly known, is accelerating. Several commercial GSIS systems are available,
including IVM (Dynamic Graphics) and Vulcan (KRJA Systems). The basic functions of
a GSIS are the geological equivalent of those of a GIS, namely, the acquisition, storage,

update, processing and display of geological data. Note that greater complexity is
involved in supplying each of these functions when compared to the 2-D GIS

equivalent. GSIS are reviewed in greater detail in Chapter 8.

1.3 Aims of Project.

The project has two main aims. The first concerns the integration of data of different

types to provide an improved spatial data model. The second aim is to provide an
efficient multi-scale representation of the spatial data model.

These aims are applied to two specific problems. The first concerns itself with the
design of an integrated multi-scale data model suited to GIS. At present, many GIS can
be regarded as limited in that 2-D topographic map data and terrain data are stored
separately. It is the author's belief that as GIS continue to develop they will benefit
from data models which model reality to an ever increasing extent. It is suggested here

that a first step towards this goal is the development of a data model which allows for

4

www.manaraa.com

Chapter 1 Project Introduction

the integration of terrain data and topographic data. In reality, geographic objects do
not all lie on the same flat surface as suggested by current GIS data models. The
decisions people make, whether it concerns something relatively trivial (such as,
'should I take a bus or should I walk ? ') or something more important (such as, 'where
is the new motorway going to go ? ') involves all available information, which will
sometimes include information regarding terrain. Integrating topographic data and
terrain data will benefit such decision making since it provides an opportunity to view
and analyse topographic data in a way which bears a closer resemblance to the real
world. Data integration can also serve to offer improved terrain modelling capabilities.
Topographic data which represent naturally occurring physical objects usually conform
to certain surface specific features (for example, a river running through a valley). In
addition, certain man-made objects, such as canals, quarries and roads, also usually
influence, or have been influenced by, the form of the ground surface. It is hoped that
combining the two data types will lead to an improved terrain model, that is, one
which more accurately represents the ground surface. Such integration will be of benefit
to application areas such as civil engineering, landscape architecture and geology.

GIS would also benefit from having data models which allowed for data to be viewed
and analysed at different levels of detail, according to the areal extent, or scale, of the
region of interest. A current goal for many GIS researchers is the development of a
scaleless database, in which all data is stored at a single, highly detailed source scale.
All other scales would be derived from the source scale data at run-time in answer to

specific database queries. At present, such a database is not feasible, since not all
generalisation functions are available in an automated form, and those which are are
often slow and only perform well over small changes in scale. Current GIS cater for
different levels of detail by adopting a multiple representation approach, that is, a
different set of data representing each scale. There are two main disadvantages to this

approach. The first concerns the high storage overheads involved in storing a complete
data set for each scale represented. Much information will be repeated between scales.
The second disadvantage involves the inconsistency which can develop between
different scale versions of the same data. Updating a particular data set at one scale
without carrying out an equivalent update at all other scales will lead to inconsistency.
It is suggested here that a compromise can be reached by adopting a multi-scale data

structure approach. Multi-scale data structures provide means of efficiently storing
and retrieving spatial data from databases at levels of detail which are adaptable to
different scales of representation. A review of such data structures is given in Chapter
4.

The second specific problem addressed in this thesis concerns the development of an
integrated multi-scale 3-D geological model. It is noted that GSIS, like their geographical
counterparts, are currently poor with regards to data integration. The need to overcome

5

www.manaraa.com

Chapter 1 Project Introduction

this problem is probably greater in the field of GSIS since geological data are usually
sparse and the geological objects they are seeking to represent are complex. Therefore
there is a need to integrate all available data in order to create accurate geological data

models. This thesis addresses a particular problem, namely, the integration of terrain
data, geological map data (topographic data) and borehole well log data to assist in
the construction of an accurate 3-D geological model. This work forms part of a larger

project currently taking place at the British Geological Survey (BGS) which is

attempting to integrate data from a variety of sources (geological and geophysical). The

ability to efficiently store and access data at multiple levels of detail is of an equal
benefit to GSIS as it is to GIS. Therefore the work addresses the design of an integrated

multi-scale 3-D geological model. This problem, and the BGS project, are discussed in

greater detail in Chapter 8.

Note that with regards to both models, in addition to the design of the data model
itself, it is also necessary to develop algorithms which when applied to source data will
allow for the implementation of the model. This project therefore addresses both the
design of the integrated multi-scale spatial data models and the development of
methods by which the models are constructed from source data.

1.4 Thesis Outline.

This chapter has served as an introduction to the thesis. It has given brief background
information concerning GIS and GSIS, and noted two shortcomings. The first relates to
the lack of data integration facilities within current systems, while the second pertains
to the inefficient way in which multiple scale representations are handled. The aims of
the thesis have been stated as finding solutions to these problems.

The remaining chapters in this thesis can be divided into three distinct groups.
Chapters 2 to 7 concern themselves with the design and implementation of data

models and algorithms suited to the efficient multi-scale representation of integrated

geographical data. The next two chapters, Chapters 8 and 9, deal with the equivalent
geological problem, developing the work described in the previous chapters into 3-D.
Finally, the thesis is concluded in Chapter 10.

Chapter 2 provides a review of some basic GIS data structures suited to the storage of
either topographic data or terrain data. The following chapter, Chapter 3, deals with
the topic of spatial access data structures, providing details of the fixed grid, the
quadtree, the R-tree and the grid file methods. Multi-scale data structures are then

reviewed in Chapter 4, with special attention given to the line generalisation tree and
the Delaunay pyramid. A new data storage scheme, termed the Multiresolution
Topographic Surface Model (MTSM), is proposed in Chapter 5. This scheme, based on
the fixed grid, the line generalisation tree and the constrained Delaunay pyramid data

6

www.manaraa.com

Chapter 1 Project Introduction

structures, provides an efficient integrated multi-scale representation of terrain data
and topographic data. Chapter 6 describes two database implementations of the
MTSM and gives the results of a series of performance evaluation tests. A new,
improved version of the recently developed Implicit TIN data storage scheme is
described in Chapter 7. An Implicit TIN version of the MTSM, termed the I_MTSM, is
then detailed.

Chapters 8 and 9 concern themselves with the design and implementation of an
integrated multi-scale 3-D geological data model. Chapter 8 begins with an
introduction to GSIS, outlining the 3-D GIS project currently being carried out by BGS.
A review of 3-D object representation techniques is then supplied, with special
consideration given to boundary representation and octree methods. Several techniques
for providing efficient spatial access to collections of 3-D objects are then discussed.
The chapter concludes with the description of a multi-scale 3-D data model (MGM),

which, building on the design of the MTSM, provides integrated storage of terrain data,
geological outcrop data and borehole data. A prototype database implementation of
the MGM, and the results of performance tests, are described in Chapter 9.

The thesis concludes in Chapter 10, which provides a thesis summary, a report on the
achievements made by the project and an indication as to how the work might proceed
in the future.

7

www.manaraa.com

Chapter 2

A Review of GIS Data Structures

www.manaraa.com

Chapter 2

2.1 Introduction.

A Review of GIS Data Structures

The data structures used for the internal representation of geographical data are a
concern to both designers and users of GIS. This chapter provides an overview of some
of the more well known of these data structures. Section 2.2 addresses the issue of the
type of data that a GIS is expected to be able to handle. Two data types of importance
to this thesis are topographic data and terrain data. Data structures suited to the
storage of each of these data types are reviewed in Section 2.3 and Section 2.4

respectively. Finally, Section 2.5 gives a chapter summary and provides conclusions as
to which of the data structures reviewed are of particular benefit to the design of the
integrated multi-scale data model proposed in Chapter 1.

2.2 Geographic Data.
It is a fact that GIS must be able to store geographic data. In a first instance, this
becomes equivalent to storing the information which appears on a map (although

advancing research in areas such as Artificial Intelligence and Hypermedia is now
enabling the storage of much more information than just that which appears on a map).
A map can be considered to be made up from objects (such as buildings, roads and
rivers), which give a graphical representation of reality, and text (YH or SWANSEA for

example), which describe what the objects mean. In addition, GIS give the possibility of
storing information which might not have been stored on the original map, such as the
population of Swansea or the price per night at the Youth Hostel. Also, much of the
information held on a map is implied information, such as Cardiff is the nearest city to
Swansea or that the Youth Hostel is on an isolated island in the middle of a lake. Since
a GIS is required to perform many functions which require implied information, such as
produce all Youth Hostels within walking distance of Swansea, it is desirable to
somehow include implied information within GIS.

The data types held in a GIS can be classified into two distinct groups, namely spatial
data and attribute data. Spatial data can itself be divided into two components, that
is, geometric data and topological data. Geometric data are used to represent the
metric locational information which appears on a map, such as the position and size of
a building, and can be in either vector or raster format. This review restricts itself to the
vector format. The main reason for this is that the two data structures which are to
form the basis of the integrated multi-scale data model (namely, the constrained
Delaunay pyramid and the line generalisation tree) are vector-based. This is not seen as
too great a restriction on the usefulness of the proposed data model since vector-
formated data is at present widely available and widely used. The 2-D vector data
format has three sub-types, namely, point, line and polygon. Other primitives such as
circles and splines are possible but these do not usually occur as primary data in a GIS.
Topological data describe the relationships between geometric data. The three basic
relationships that exist are connectivity, adjacency and inclusion. Topological data are

9

www.manaraa.com

Chapter 2A Review of GIS Data Structures

not always explicitly stored since in principle they can be derived from geometric data.
Attribute data are alphanumeric data related to geographic objects, such as the

estimated value of a building or the name of a river.

A further geometric data type, which can be regarded as distinct from the others
already mentioned, is that which represents terrain. This type of data item can be

distinguished from, say, an isolated vector point representing a spot height or elevation
point, in that it forms part of a collection of other data items of the same type, which
when joined together in some way seek to form an approximation to the ground surface
(a terrain model). Data of this type will hereafter be referred to specifically as terrain
data, while all other geometric data (polygons, lines, points and, in next section,
objects) will be referred to as topographic (physical feature) data. Traditionally, GIS
have been primarily concerned with topographic data. When terrain models are
present, they are stored separately. As such, the storage of topographic data and the

storage of terrain data will now be discussed separately.

2.3 Data Structures for Topographic Data.
The types of topographic features that appear on maps, such as buildings, roads and
county borders, can be thought of as comprising of points, lines and polygons. The
latter are perhaps the most frequently encoded feature in geographic data systems. The

capture and storage of such data commonly takes one of two forms, vector format and
raster format, each method having particular advantages and disadvantages when
compared with the other. For reasons which have already been mentioned, this section
will deal only with vector data.

2.3.1 A Simple Storage Scheme.
A simple data structure for storing map feature data is that of encoding entity by

entity, with no account taken of topological relations between entities. In other words,

all polygons, lines and points are encoded without regard of the fact that they may
intersect or merge with other polygons, lines and points. Names or symbols which
define what each entity is are held as a list of attribute text strings, as shown in Figure
2.1. While this method has the advantage of simplicity, it has many disadvantages (see

Figure 2.2). Firstly, lines between adjacent polygons must be stored twice, leading to

serious errors in matching (giving rise to slivers and gaps along the common boundary)

and unnecessary data duplication. A second disadvantage is that there is no
topological information, which results in poor performance in operations such as

adjacent object queries and the inability to represent islands (except as purely
geographical constructions).

10

www.manaraa.com

Chapter 2

1: 2

A Review of GIS Data Structures

Entity Number Coordinate List I Attribute

1

2

X1 yl
x2 y2
x3 y3
x4 y4
X1 yl

x5 y5
x6 y6

HOUSE

ROAD

Figure 2.1 -A simple method for storing topographic feature data.

Finally, there is no simple way of checking if the topology of a polygon is correct, that
is, if it is incomplete (dead-ends) or if it makes a topologically inadmissible loop
(weird polygons).

Dead I

C

Sliver

Figure 2.2 - Some of the disadvantages of the simple method for storing data.

2.3.2 An Improved Data Structure.
Some of the limitations of independently encoded structures can be overcome by
introducing a point dictionary (Figure 2.3). This dictionary contains the coordinates of
every data point on the map, with each coordinate pair being assigned an unique
identifier. Polygons, lines or points representing map objects are then made up of lists

of coordinate identifiers. This method has the advantages that boundaries between

adjacent polygons are unique and therefore slivers and gaps do not occur. A further

advantage is that point coordinates are only stored once, thus reducing storage costs.

11

Weird Polygon

www.manaraa.com

Chapter 2

12

1

4
3

52
6

Point Dictionary

Coordinates I Identifier

X1 yl 1
x2 y2 2
x3 y3 3
A y4 4
x5 y5 5
x6 y6 6

11
2
3
4
1

HOUSE

25I ROAD
6

Figure 2.3 - The point dictionary method.

An extension to this method is the addition of a line dictionary and a polygon
dictionary. Map objects can also be introduced as the highest level data entity, with
each object consisting of a list of identifiers referring to its constituent polygon, line and
point parts. This method further reduces storage overheads by removing the need to

store multiple copies of the same line or polygon.

2.3.3 Topological Data Structures.
Further data structures have arisen which address the problem of including topological

relationships within the data model. One of the first attempts at such a structure was
the Duel Independent Map Encoding (DIME) system of the US Bureau of the Census
[3]. The basic element of the DIME data file is a simple line segment defined by its two

end points, referred to as nodes; more complex lines are represented by a series of
segments. The segment has two pointers to the nodes, and codes for the polygon on
each side of the segment. Because nodes do not point back to segments, or segments to

adjacent segments, laborious searches are needed to assemble the outlines of polygons.
Moreover, the simple segment structure makes handling of complex lines very
cumbersome because of large data redundancy.

A simple, effective approach is that developed by the Netherlands Soil Survey Institute
[4], as shown in Figure 2.4. The polygon map is stored as a segment or chain file in

which each chain is stored as a list of x, y coordinate pairs and two pairs of pointers
that index the adjacent map areas. The attributes describing each polygon, together

with its corresponding index, are stored separately.

A Review of GIS Data Structures

Entity Number I Point List I Attribute

12

www.manaraa.com

Chapter 2

4
�L

Chain File

C.

2

A Review of GIS Data Structures

Chain number I Coordinates I Polygons

cl

c2

c3

Description File

Polygon Number I Description

P1 House

p2 Shop

p3 Garage

X1 yl
x2 y2
x3 y3
x4 y4

x4 y4
X1 yl

x5 y5
x8 y8
x7 y7
x6 y6

pl, -

pl, p2

p3, -

Figure 2.4 - Polygon map stored as a chain file with descriptive data stored

separately.

A more recent development, illustrated in Figure 2.5 is the Topologically Integrated
Geographic Encoding and Referencing (TIGER) System [5,6], produced by the US

Bureau of the Census as a refined successor to DIME. Here, polygon, line and point
primitives are referred to as 2-cells, 1-cells and 0-cells respectively. The first and last

points of each 1-cell are called from and to 0-cells. The intermediate points of a 1-cell

are called curvature points and are connected by vectors. Each 1-cell points to the two
2-cells positioned directly to its left and right sides. The unbounded region that

surrounds the collection of all 1-cells is a special 2-cell, labelled the outside 2-cell. In

addition to these definitions, the topological structure must obey two rules. Firstly, the

rule of Topological Completeness insists that the topological relationships between cells

are complete. For example, this means that each 2-cell, except the outside 2-cell, must
be completely surrounded by a set of connected 1-cells. The second rule, that of
Topological-Geometric Consistency, requires a consistent relationship between the

geometric placement of cells and the pure topological relationships of cells. For

example, no two 2-cell interiors can share a common coordinate.

13

www.manaraa.com

Chapter 2 A Review of GIS Data Structures

from

I
1-cell

3-cell left right
2-cell 2-cell

ý-

to
0-cell

Figure 2.5 - The TIGER structure.

1-cell

The primary data model for the widely used ARC/INFO GIS consists of four main
entities, namely Arcs, Nodes, Label Points and Polygons. Arcs are used to represent
line features and the borders of polygons. One line feature or polygon can be made up
from many Arcs. The shape of Arcs, which are each assigned an identifier termed a
USER_ID, are defined as a series of x and y coordinates. The data model provides the
possibility of linking Arcs to their endpoints (Nodes) and to the areas (Polygons) to
each side of them. Nodes, which represent Arc endpoints and where line features

connect, can be topologically linked to the set of Arcs which meet at the Node. Label
Points either represent point features or are used to assign USER_IDs to polygons.
Each Label Point is described by an x and y coordinate and a USER_ID. Polygons
represent area features as defined by the series of Arcs which compose their borders

and by a Label Point positioned inside the Polygon. This Label Point is used to assign
the Polygon a USER_ID. Descriptive data concerning Arcs, Label Points and Polygons

are held in relational Attribute Tables. This information is related to each Arc, Label
Point or Polygon via the USER_ID assigned to each feature.

2.4 Data Structures for Terrain Data.
As the number of GIS users has increased and the range of required uses diversified, a
need has arisen for GIS to provide facilities and functions which involve the Earth's

surface. Disciplines which would benefit from these facilities and functions include civil
engineering, radio path loss analysis, geological surveys and landscape architecture. A

means by which the Earth's surface can be adequately represented within a GIS is
therefore required. Digital terrain modelling is the term commonly used to describe the

range of methods that have been devised to meet this requirement. Since the Earth's

surface is an irregular 3-D continuum, it can only be fully defined and depicted by an
infinite number of discrete measurements. This approach is not feasible, due to both the
problem of data collection and to the finite nature of data storage. Therefore, the

14

www.manaraa.com

Chapter 2A Review of GIS Data Structures

problem of digitally representing the Earth's surface has had to be addressed by

adopting methods, both numerical and mathematical, based on a finite set of terrain
measurements.

The nature of the terrain data structures adopted depends largely upon the degree to
which they attempt to model reality and, or, the intended application of the user. These

user-specific approaches have led to the creation of a variety of digital terrain models
(DTMs), an overview of some of the most popular of which are given by Peucker [7]. It
is noted here that the primary purpose of a DTM is to serve as a substitution for the
Earth's surface. The quality of the DTM is therefore primarily determined by the degree
to which it approximates to this surface.

2.4.1 The Regular Rectangular Grid.
The most commonly used DTM is the regular rectangular grid (Figure 2.6). Its

popularity may be attributed to its simplicity, implicit coordinates, application
efficiency and widespread availability of data in this format. The grid does however
incur a major disadvantage in that it does not adapt to the changing roughness of
terrain. This means that in areas where there is considerable terrain variability the grid
will need to have a high point density if it is to approximate accurately. When the same
sampling density is applied to flat terrain it will lead to considerable data redundancy.
Reaching a suitable compromise between point density and data redundancy cannot
always be achieved.

Figure 2.6 - The Regular Rectangular Grid. Each point represents a height measurement.
Only the z values need to be stored since the x and y coordinates can be derived from the

position of the point in the grid.

2.4.2 The Triangulated Irregular Network.
An alternative DTM, which seeks to overcome the disadvantage of the regular
rectangular grid, is the Triangulated Irregular Network, or TIN [8]. The TIN utilises

15

www.manaraa.com

Chapter 2A Review of GIS Data Structures

'surface-specific' points, such as peaks, pits and passes, to form a network of planar,
non-overlapping and irregularly shaped triangular facets. The TIN model adapts itself
to the roughness of the terrain, with no data redundancy, since all data included in the

model represents only critical points. The construction of this model is equivalent to the

problem of computing a straight-line graph in the plane, called a planar triangulation,
in which the data point projections are joined by straight lines which intersect only at
their endpoints.

Methods for constructing the planar triangulation of a set of points have received much
attention in the literature (see, for example, [9,10,11,12]). For most applications, such

as interpolation, an arbitrary triangulation might not provide an acceptable solution
because of the elongated shape of its triangles. A good triangulation can be thought of

as one in which the triangles are as equiangular as possible, thus avoiding long and thin
triangular facets.

2.4.3 The Delaunay Triangulation.
The Delaunay triangulation has become accepted as the best approach to the creation
of a TIN. It is optimal with respect the equiangular requirement and thus has been

extensively used as a basis for surface modelling. In addition to producing the most
equiangular set of triangles for a given set of points, it has the advantage of producing
a unique triangulation of those points.

2.4.3.1 Defining the Delaunay Triangulation.
The 2-D Delaunay triangulation of a set of points S in the plane can be defined as the
dual of the Thiessen tessellation (also known as the Dirichlet tessellation or Voronoi
tessellation) of S. The Thiessen tessellation is formed as a result of subdividing the

plane into polygonal regions, each of which is associated with a point p of S and is
defined as the region closer to p than any other point q of S [10]. This is an important

concept in geographic applications since a Thiessen polygon can be used to define the
region of influence of any point in an areal context. In Figure 2.7, points 1 to 5 are
known as the Thiessen neighbours of point p.

16

www.manaraa.com

Chapter 2 A Review of GIS Data Structures

2

5 5

44

Figure 2.7 - Delaunay triangulation around a point p.

Three lemmas can be distinguished which globally and locally define a Delaunay
triangulation [11]. They are -

Lemma 1: For any triangulation of N vertices, B of which are on the
boundary (convex hull), there are 2N-B-2 triangles and a
total of 3N-B-3 edges.

Lemma 2: Two vertices form a Delaunay edge if and only if there exists a
circle passing through the vertices that does not contain any
other vertex.

Lemma 3: Three vertices form a Delaunay triangle if and only if its
circumcircle does not contain any other vertex in its interior.

By applying Lemma 2 and 3 it is possible to produce algorithms which construct the
Delaunay triangulation for S (see Figure 2.7).

2.4.3.2 Data Structures for Storing TINs.
A TIN can be considered as having three primary topological components, namely,
vertices, edges and triangles. A data structure suited to encoding a TIN can be regarded
as the combination of these basic components and a set of adjacency relations [12].
Woo [13] demonstrates, using an arrow diagram (Figure 2.8), that a total of nine
relations can be defined between pairs of these primitive components. Furthermore, it
has been stated by De Floriani [12] that any suitably selected subset of these relations
can represent, completely and unambiguously, the topology of a TIN.

17

www.manaraa.com

Chapter 2 A Review of GIS Data Structures

lr, 7, \

low

Figure 2.8 - Nine possible relations between pairs of entities in a TIN

(V: vertex, E: edge, T: triangle).

In all TIN data structures it is necessary to define the x, y and z coordinates of every
surface-specific point. It is also possible to define a point index to provide an unique
identifier for each point. In Figure 2.9, it is assumed that having done this, some
additional data must be stored to define the structure of the triangulation. Which of the

nine schemes is most appropriate is dependent on the requirements of specific
applications, so that they each have their own distinct advantages and disadvantages.
It should be noted that a hybrid of topological relationships is allowable but any such
increase in topological information is directly related to storage costs. For any
triangulation of N points, B of which are on the boundary, it can be shown using Euler's
theorem that there are 2N-B-2 triangles and a total of 3N-B-3 edges (or 6N-2B-6
directed pointers if stored as links from each vertex). For a vertex-based TIN, each
point's coordinates may be stored with a list of pointers to the connected vertices (see

vertex-vertex relation in Figure 2.9). If the x, y and z coordinates, index and each
pointer require the same unit storage, the total TIN storage will approximate to 10N.
The triangle-based TIN will require more storage (approximately 16N) since for each of
the 2N-B-2 triangles, pointers to three vertices and three neighbouring triangles are
stored (12N-6B-12), together with vertex coordinates and index (4N).

2.4.3.3 Constructing a Delaunay Triangulation.
Efficient algorithms for computing a 2-D Delaunay triangulation have been presented in
the literature, a comprehensive review of which is given by De Floriani [12]. Using
Lemmas 2 and 3 from Section 2.4.3.1, algorithms can be defined for the construction of
the Delaunay triangulation in which the properties of Lemma 1 are implicitly

incorporated.

18

www.manaraa.com

Chapter 2

V4

"E2 Q

El vi Elm

T1

/
Q

E4 /
T4

V3

A Review of GIS Data Structures

1 Vertex - Vertex
2 Vertex - Edge
3 Vertex - Triangle

V2
4 Edge - Vertex
5 Edge - Edge
6 Edge - Triangle

7 Triangle - Vertex
8 Triangle - Edge
9 Triangle - Triangle

Given Vi store V2, V3, V4
Given Vl store El, E2, E3
Given Vl store Tl, T2, T3

Given El store V1, V2
Given El store E4, E2, E5, E3
Given El store T1, T3

Given Tl store V1, V2, V3
Given Tl store El, E4, E3
Given Tl store 12, T3, T4

V5

Figure 2.9 - Illustration of the nine possible relations between pairs of entities in a
TIN.

I

Classical algorithms for constructing the Delaunay triangulation can be classified in a
number of ways (see [121). For instance, an algorithm is termed incremental if it

constructs the triangulation by starting from any point and proceeding by adding the

remaining points into the subdivision in a stepwise manner. Conversely, divide-and-

conquer algorithms recursively split the set of data points into equally-sized subsets
until elementary subsets are obtained. These can then be merged to form the complete
triangulation. One-step and two-step methods are distinguished by whether they

produce a final optimal triangulation in a single step or in two steps (by firstly

obtaining an arbitrary triangulation which is then optimised). Also, static and dynamic

algorithms differ in that the former assume that all data points to be included in the
triangulation are known in advance while the latter make no such demand.

An algorithm of particular relevance to this thesis is the point insertion algorithm
described by Watson [14], and more recently adopted in the work of De Floriani [15].

The algorithm is an incremental, dynamic, one-step algorithm based on the stepwise
insertion of internal, currently untriangulated points, into an initial enclosing Delaunay

triangulation. The initial triangulation can be obtained in a number of ways. A simple
method is to employ three dummy points which form an initial, single enclosing
triangle. On completion of the triangulation process any triangle which contains a
dummy point is removed. An alternative approach consists of producing an initial
Delaunay triangulation of those points which define the convex hull of the points to be

triangulated. Algorithms for constructing the convex hull of a set of points and
computing the Delaunay triangulation of a convex polygon are given by Larkin [16] and
Derijver and Maybank [17] respectively.

19

www.manaraa.com

Chapter 2 A Review of GIS Data Structures

o 0 p

Triangulation Locate the Find the rectangle Delete the Triangulation
before new point triangle in Rp which bounds triangles in Ip after p is
p is inserted. which p lies. the triangles Ip then Delaunay inserted.

influenced by p. triangulate Rp.

Figure 2.10 - Inserting a point into a Delaunay triangulation.

The second stage involves sequentially inserting each currently untriangulated point
into the current Delaunay triangulation. After each insertion a new Delaunay
triangulation will have been formed. Descriptions of methods for inserting a point into

an existing Delaunay triangulation have been given in the literature [14,15]. These
methods are based on the premise that according to the circle criterion (Lemma 2), the
insertion of a new point p into a Delaunay triangulation T affects only those triangles Ip
of T whose circumcircles contain p. The process of inserting the point p can be

summarised as locating the triangle t of T in which p lies; recursively examining the
neighbours of t until all triangles I, are found; constructing the polygon RP formed by the
external edges of the triangles in Iý deleting the triangles in IP and finally Delaunay
triangulating RP (this is done by connecting p to each vertex of RP). This process is
illustrated in Figure 2.10.

2.4.4 Constrained Delaunay Triangulation.
As has already been mentioned, triangulation algorithms based on Delaunay
triangulation have the advantage of producing the set of most equiangular triangles.
However, note that Delaunay's method was first developed to solve nearest neighbour
problems in the xy-plane, not as a method for surface approximation. As such,
Delaunay triangulation algorithms do not consider the third dimension (z coordinate),
and may therefore produce triangle edges that contradict the true topology of the

surface [181. To counter this problem, while at the same time attempting to preserve the
equiangular property of Delaunay triangulation, algorithms have been developed which
produce constrained Delaunay triangulations [19,20,211. These algorithms ensure that
any known constraints on the surface, such as lines representing ridges or valleys, are
maintained as edges within the triangulation. Retention of these edges results in local
violation of the Delaunay circle criteria. However, in doing so, the surface more

20

www.manaraa.com

Chapter 2A Review of GIS Data Structures

accurately models the real world surface. The Delaunay criteria is used to model those
parts of the surface for which no structural information is available.

De Floriani and Puppo [22] present a dynamic, two-step method for producing the

constrained Delaunay triangulation. The first step is to construct a conventional
Delaunay triangulation of all vertices, using any method available. The second stage is
to iteratively insert the constraining features into the triangulation as a series of straight
line segments. After each insertion, a new constrained Delaunay triangulation is

produced.

Algorithms for inserting a line segment L, defined by vertices pl and P2 (which must
already be in the triangulation), into a constrained Delaunay triangulation T are given
by Heller [21] and De Floriani and Puppo [22]. They can be summarised as firstly
locating a triangle t of T which has pl as a vertex; proceeding to find all triangles IL
through which L passes; constructing the polygons RLI and RL2either side of L formed
by the external edges of the triangles in Iv deleting the triangles Iv and finally Delaunay
triangulating the polygons RLI and RL2 in turn (see Figure 2.11).

Pl Pl pl pl

Pi PZ PZ PZ

Triangulation Find the Construct polygons Delaunay Triangulation
before the line triangles IL RLi and Rtz formed triangulate Iti after L is
segment L (pi, p2) intersected by L. by external edges of and Ru inserted.
is inserted. triangles of I Delete

triangles of L.

Figure 2.11- Inserting a line segment into a constrained Delaunay triangulation.

2.5 Summary and Conclusions.
This chapter has reviewed a number of data structures suited to the storage of
geographic data. The data structures fall into two categories, namely, those used for

storing topographic data and those used for storing terrain data. Chapter 1 has stated
that the multi-scale data model being designed must accommodate both topographic
and terrain data, and integrate both data types in some way. It is suggested here that
any topographic data structure used in this work should facilitate the inclusion of the

21

www.manaraa.com

Chapter 2A Review of GIS Data Structures

three vector data format sub-types (point, line and polygon), and objects made up
from collections of these sub-types. Also, to avoid matching errors and unnecessary
data duplication, it is beneficial to adopt the point, line and polygon dictionary

approach, outlined in Section 2.3.2. The inclusion of topographic topological
information is not seen as vital at this stage. With regards the storage of terrain data,

the TIN approach seems to be appropriate to the design of the integrated multi-scale
data model. In addition to the traditional advantages it has over other terrain

representation techniques (see Section 2.4.2), it has two properties of particular
importance to this thesis. Firstly, certain of the algorithms used for the construction of
TINs (for example, [14]) can be adapted and used as surface generalisation algorithms.
These algorithms can be used in conjunction with more complex triangle based data

structures to produce hierarchical triangulations (see Section 4.3). The second
important property a TIN has is its ability in include arbitrarily positioned points and
pre-defined edges, thus facilitating the integration of topographic data. Both these

properties are explored in greater detail in later chapters.

22

www.manaraa.com

Chapter 3

Efficient Access to Spatial Data

www.manaraa.com

Chapter 3

3.1 Introduction.

Efficient Access to Spatial Data

The purpose of this chapter is to introduce the concept of spatial access data
structures. Section 3.2 provides some indication as to why spatial access data

structures are needed in GIS. A review of some of the spatial access data structures
which are, at present, in common use is then given in Section 3.3. The subject is looked

at purely from a two-dimensional point of view, with special attention being given to
the fixed grid, the quadtree, the R-tree and the grid file methods. Section 3.4 provides a
chapter summary and indicates which of the reviewed methods are to be adopted in
the design of the integrated multi-scale data model.

3.2 The Need for a Spatial Access Data Structure.
A simple way of demonstrating the need for a spatial access data structure is by

means of example. Consider a cartographic database consisting of point data,
representing cities, and associated attribute data. A typical query to such a database

might be to determine all cities within 50 km of some other city, Bristol say, that have a
population in excess of 100,000. If the data is stored conventionally, in a relational
database for example, one possible approach to answering the query would be to
sequentially search through the list of cities, checking for population, and, for those
cities with population greater than 100,00, calculating the distance from Bristol. Such
an approach appears satisfactory when the database is small or when a large
proportion of the cities satisfy the query. However, such a simplistic approach is not
suitable for a large database, representing the whole of the UK for example, where only
a small proportion of the cities will satisfy the query. It is therefore necessary to design
databases where it is possible to retrieve information efficiently according to its spatial
location, thus reducing the amount of data accessed, and subsequently processed, as
the result of a query. The data structures upon which such databases are based are
referred to as spatial access data structures.

3.3 Spatial Access Data Structures.
This section discusses four well-known, and commonly used, spatial access data

structures. They are the fixed grid, the quadtree, the R-tree and the grid file. A

comprehensive review of these and other spatial data structures is given by Samet [23,
24]. The reason for choosing these four data structures for special scrutiny is that a
basic understanding of them is necessary to assist in the description of more complex
data storage schemes in later chapters.

It is not the intention of this thesis to give an in-depth evaluation of the relative merits
and demerits of each of these data structures. One may benefit by its simplicity,
another by its efficiency or applicability to a wide range of data types. Much work in
the literature has been produced with regards quantifying some of these relative

24

www.manaraa.com

Chapter 3 Efficient Access to Spatial Data

attributes (see, for example, [25,26]), with seemingly no single data structure coming
out an overall winner. Suffice to say that when dealing with spatial data, it is necessary
to have some kind of data structure providing indexing with regards spatial location.
The benefits gained or lost between which of the available structures is used are
minimal when compared to the benefits gained by having a spatial access data

structure, of any type, in the first instance [26].

3.3.1 The Fixed Grid.
The fixed grid [27] is a data structure based on the concept of the division of xy-space
into equal-sized cells. Thus a single areally extensive region of spatial data is

partitioned into smaller, equal-sized sub-regions. Each cell, sometimes referred to as a
bucket, corresponds to an area of storage (or memory) in which all data lying within
the cell, in space, is stored. The data structure is essentially a directory in the form of a
two-dimensional array, with one entry per cell.

The fixed grid is particularly suited to storing point data. It is best illustrated by means
of a simple example. Consider the following set of conventionally stored point data
(Figure 3.1), representing the location of cities.

Point Attribute

184.0 32.8 Bath
166.5 34.2 Bristol
136.3 38.5 Cardiff
182.0 64.0 Gloucester
176.0 48.0 Newport
102.5 44.0 Swansea
184.5 88.0 Worcester

Figure 3.1= Conventionally stored point data.

To locate all cities within 20 km of Newport would necessitate examining the

coordinates of each of the 6 other cities and performing a distance between points
calculation in each case.

Now consider partitioning the data using a fixed grid (Figure 3.2). To answer the

previous query, the first step would now be to produce a list of all grid cells which lie

within 20 km of Newport, a relatively trivial operation. This gives a list of 9 possible
cells, only 2 of which contain relevant data. There is now therefore only the possibility
of 2 cities (Bristol and Cardiff) lying within 20 km of Newport, each of which can be

checked in turn.

25

www.manaraa.com

Chapter 3 Efficient Access to Spatial Data

0 1 2 3 4
Worcester
"

30 31 2 33 34

Gloucester

0 1 22 23 4

Swansea
Newport

S
0 Cardiff

10 11 12 130 14 Bath
Bristol 0

00 1 2 3 04

100km 11-

I

100km

Figure 3.2 - Storage of point data using a fixed grid.

Point data which lies on the edge or corner of two or more cells is catered for by

adopting the convention that such a point is always assumed to lie in the cell above
and to the right (or some similar convention).

Each cell corresponds to an area of storage, the size of which is fixed. A problem will
therefore occur if the number of data items that lie within a cell necessitates more
storage than is available. Such occurrences can be minimised by optimising the cell size
[28], but there is always the possibility that the number of data items will exceed the
storage limit. This problem can be overcome by employing a chaining mechanism. Here,

each full cell maintains a pointer to a secondary cell (which is not part of the original
grid) in which excess data is stored. The secondary cell may, if necessary, point to a
further secondary cell, and so on, thus forming a chain of cells.

It is clear that the fixed grid is best suited to storing point data and there are potential
difficulties encountered when dealing with more complex data types such as line and
polygon data. For example, it would not be unusual for a polygon to intersect more
than one grid cell, or for a large number of complex data items to intersect a single cell.
A solution to the first of these difficulties is to segment any data item that intersects
more than one cell into a number of new data items, each of which lies within only one
cell. This results in an increase in storage due to the increased number of data items

and the additional data required to define the points of intersection the new data make
with the grid cell edges. The second difficulty can be catered for using the chaining
techniques previously described. This, however, is inefficient in that long chains of data
items can occur, resulting in increased storage and slower data access.

26

www.manaraa.com

Chapter 3 Efficient Access to Spatial Data

As previously suggested, a disadvantage of the fixed grid data structure is that it is

entirely regular in its subdivision of space, regardless of whether or not this is

reasonable for the data being stored. If the data is uniformly distributed over space this
does not lead to any problems. However, if the data is non-uniformly distributed over

space two particular problems arise [23]. Firstly, some cells will be under-utilised,
being empty or nearly empty. This is clearly inefficient with regards storage space. On

the other hand, other cells may be over-utilised, leading to long overflow chains. This
leads to a large number of storage accesses for all subsequent queries involving any cells
that have overflowed, leading to increased access time. Three spatial data structures
which seek to overcome these disadvantages are the quadtree, the R-tree and the grid
file. These data structures are data adaptive in the manner in which space is divided,

that is, division is object-driven rather than space-driven [15].

3.3.2 The Quadtree.

The quadtree, first suggested by Klinger [29], is a data structure which is based on the

recursive regular decomposition of a square region into quadrants and sub-quadrants.
Much pioneering work regarding the quadtree and its derivatives has been carried out
in recent years by Samet (for example, [23,24,30]).

Perhaps the simplest form of quadtree is the region quadtree [29,31], which is

concerned with the efficient representation of two-dimensional binary image data. For

a binary image, covering a square region, the region quadtree is constructed as follows.

If the region under consideration is non-homogeneous, that is, does not consist entirely

of 1's or entirely of 0's, it is divided into quadrants. Each quadrant is checked in turn
for homogeneity, and any which are found to be non-homogeneous are themselves

subdivided. Subdivision continues in a recursive manner until sub-quadrants are

obtained that consist entirely of 1's or entirely of 0's. The region quadtree is represented
by a tree structure, rooted at the node representing the whole square region. Each son of

a node represents a quadrant of the region represented by that node. Each node has

out-degree (number of sons) 4, except the leaf nodes, which have out-degree 0 (as they

are not subdivided further). A node can therefore be represented by five fields, the
first four containing pointers to sons (if there are any), the fifth indicating if the node is

empty (0), full (1) or a non-leaf node. As an example, consider the image shown in

Figure 3.3a, represented by the 23 x 23 binary image in Figure 3.3b. 1's correspond to
image elements, 0's to non-image elements. The resulting quadtree subdivision and

region quadtree are shown in Figure 3.3c and Figure 3.3d respectively.

27

www.manaraa.com

Chapter 3 Efficient Access to Spatial Data

- - 7 77 7 (l

I I 1 0 1) 0 11 11

1 1 1 0 0 0 0 0

1 1 1

I 1 1 1 1 1 U 0

1 1 U 1 1 1 ll o

1 1 (U ((1

(n) (h)

l 2

3
4 5

h

6 7

9 lU 1f 17

12 13 18 19
11

14 l5 20 21
22

(c)

(a)

Figure 3.3 - The region quadtree. (a) Image. (b) Binary image.
(c) Quadtree subdivision. (d) Region quadtree.

The region quadtree, developed for storing binary, or raster, data, has been extended to
allow for the storage of point, line and polygon data. The MX quadtree [23] is an
attempt to use region quadtree methods for the storing of point data. MX stands for
MATRIX and the approach is to treat the point data as existing in a sparse matrix,
each point being equivalent to a single matrix element. The matrix is decomposed by a
method identical to that used for binary data. However, each node now consists of six

28

4567 12 13 14 15 18 1Y 20 21

www.manaraa.com

Chapter 3 Efficient Access to Spatial Data

fields. The first four contain pointers to sons, the fifth indicates if the node is empty,
full or a non-leaf node and the sixth contains descriptive information about the point
being represented at the node. There is no need to store the coordinates of the point
data since this is derivable from the path to the node from the root of the tree.

The usefulness of the MX quadtree depends upon there being a one-to-one
correspondence between points and the matrix elements. This constraint is relaxed
with the PR (Point Region) quadtree [23]. The PR quadtree is organised in a way
similar to the region quadtree. The difference is that leaf nodes are either empty or
contain a data point (that is, full) and its coordinates. A quadrant contains at most
one data point. A PR quadtree node is therefore made up of eight fields. The first six
correspond to those of the MX quadtree, with two extra fields required to store the x
and y coordinates of the point represented by the node.

Further extensions to the region quadtree data structure have resulted in many quadtree
variations suited to the storing of line and polygon data. These include the edge
quadtree [32], the least square quadtree [33], the line quadtree [34] and the PM

quadtrees [34,35]. The edge, least square and line gitadtrees are all pixel based

methods, and as such, will not be dealt with further here.

There are three types of PM quadtree, the PM1, PM2 and PM3 quadtrees, which are
each oriented towards storing information about the edges from which lines and
polygons are made up. PM quadtrees are arranged in a way similar to the region and
PR quadtrees. A region is repeatedly subdivided into four equal-sized quadrants until
obtaining leaf nodes that meet a specific criterion. In each case edges are not permitted
to exist in more than one leaf node. This necessitates that each edge be divided into

sub-edges, termed q-edges. The q-edges are formed by clipping the edge against the
borders of each node it intersects. The leaf nodes of a PM1 quadtree (Figure 3.4a) must
satisfy the following conditions - (a) contain, at most, one vertex; (b) if it contains a
vertex, it cannot include a q-edge that does not include that vertex; and (c) if it

contains no vertices, it can contain, at most, one q-edge. The record definition of each
tree node is more complex for PM quadtrees than for the quadtrees previously
described. It is necessary to include fields containing pointers to descriptions of any
point or q-edge data that lies within it, in addition to the usual son pointer and node
type fields.

Each of the PM methods differs in its treatment of edge information, but none permits
the storage of more than a single vertex in a leaf node. The PM2 quadtree replaces
condition (b) of the PM1 leaf node definition by allowing leaf nodes that do not
contain a vertex to contain more than a single q-edge, provided they meet at a common
vertex (Figure 3.4b). The least restrictive is the PM3 quadtree (Figure 3.4c) which allows

29

www.manaraa.com

Chapter 3 Efficient Access to Spatial Data

any number of q-edges to be present within a given node. This approach is considered
by Samet and Webber [34] to be the most useful of the PM quadtrees and can be used
to store points, lines and polygons, without error.

(Q)

(b)

(c)

Figure 3.4 -The PM quadtree. (a) PMl. (b) PM2. (c) PM3.

The quadtrees discussed so far, where the tree structure is explicitly defined, incur the
storage overhead of having to store non-leaf nodes. An alternative approach is that of
the pointerless, or linear, quadtree [36]. In this case only leaf nodes are stored and their

position in the overall tree structure is identified by a unique key. The key, or address,
of each leaf node is generated using numbering systems known as tesseral addresses
[37]. Of these systems, Morton addressing [38] appears to be the most useful and most
frequently used [23]. This addressing scheme (as with others) converts the
two-dimensional xy-space, that is the quadtree cells represented by the leaf nodes,

30

www.manaraa.com

Chapter 3 Efficient Access to Spatial Data

into a one-dimensional list of integer keys. If the list of keys is sorted into ascending
order, they trace a Peano space-filling curve (Figure 3.5).

Figure 3.5 -A Peano space filling curve.

An important characteristic of this method is that cells which are spatially close tend
to have addresses close to each other. This is of use since, in general, geographical
queries are locationally specific. The list of keys and associated data (which will
depend on the type of quadtree being used, region or PM1 for example) can then be

stored using a conventional database scheme. The example shown in Figure 3.6
demonstrates how the quadtree given in Figure 3.3 can be represented as a linear

quadtree.

The Morton code of a quadtree cell is formed by bit-interleaving the x and y

coordinates of its bottom left hand corner (or some similar convention). For example,

consider a cell defined by the bottom left hand coordinate pair (x=3, y=4), the binary

representation of which is (011,100). Interleaving the bits, with y arbitrarily deemed to

be most significant, results in a binary Morton code of 100101, which converts to a
decimal value of 37.

31

www.manaraa.com

Chapter 3 Efficient Access to Spatial Data

Decimal Binary Binary Decimal
Region Coordinate Level Coord inate Morton Code Morton Code

1 0 6 2 000 110 101000 40
2 2 6 2 010 110 101100 44
3 0 4 2 000 100 100000 32
4 2 5 3 010 101 100110 38
5 3 5 3 011 101 100111 39
6 2 4 3 010 110 100100 36
7 3 4 3 011 100 100101 37
8 4 4 1 100 100 110000 48
9 0 2 2 000 010 001000 8
10 2 2 2 010 010 001100 12
11 0 0 2 000 000 000000 0
12 2 1 3 010 001 000110 6
13 3 1 3 011 001 000111 7
14 2 0 3 010 000 000100 4
15 3 0 3 011 000 000101 5
16 4 2 2 100 010 011000 24
17 6 2 2 110 010 011100 28
18 4 1 3 100 001 010010 18
19 5 1 3 101 001 010011 19
20 4 0 3 100 000 010000 16
21 5 0 3 101 000 010001 17
22 6 0 2 110 000 010100 20

(a)

Decimal Level

02
73
82
12 2
18 3
19 3
24 2
32 2
36 3
38 3

(b)

Figure 3.6 -A linear quadtree. (a) Addresses derived by bit-interleaving. (b) Possible

storage representation.

As well as the Morton key, it is also necessary to store for each leaf node the level at
which the node appeared in the original tree. Without explicitly recording this
information it would be impossible to deduce how large a particular quadtree cell was.
For example, the shaded cells in Figure 3.7a and 3.7b are only distinguishable if the
level at which they appear is recorded.

32

www.manaraa.com

Chapter 3

(a)

Efficient Access to Spatial Data

(h)

Figure 3.7 - Two quadtree cells which cannot be distinguished without the level

number being stored. (a) Level 1. (b) Level 2.

Other variations of the quadtree have been devised, a comprehensive study of many of
which is given by Samet [23,24]. The quadtree structures that have been reviewed in
this section should however be sufficient to assist in a more clear understanding of later

chapters.

3.3.3 The R-tree.

The R-tree [39] is a hierarchical data structure, derived from the B-tree [40], that

provides an index mechanism which allows data items to be retrieved according to
their spatial location. It is again based on the concept of the decomposition of space, in
this case the decomposition being dynamic and dictated by the spatial objects
themselves.

The rules for building an R-tree are similar to those of a B-tree. All terminal, or leaf,

nodes appear at the same level. Each leaf node contains one or more record entries of
the form

(I, object-id)

such that I is the smallest rectangle that spatially contains the data object pointed to
by the identifier object-id. Non-leaf nodes contain entries of the form

(I, child_id)

where child_id points to a node in the next lower level of the R-tree and I is the
bounding rectangle of all the objects pointed to by the lower node entries.

An R-tree of order (m, M) means that each node in the tree, excluding the root, contains
between m (m <= M/2) and M entries. The root node has at least 2 children unless it is

33

www.manaraa.com

Chapter 3

a leaf.

Efficient Access to Spatial Data

I oýo °oýJ
(a)

rr=- - =i-
R5

ll 18 ý2
I7

--------III I RI
- =i -----R2JI

I r---- I-
II3I III- ---ý

I IIIO II
II 14 III

R4 I III R6 II

(b)

(C)

Figure 3.8 - An example R-tree. (a) Eight objects. (b) Decompose into four regions. (c) The

resulting R-tree.

The following example demonstrates how an R-tree, with m=1 and M=3 say, is built.
Consider the arrangement of objects shown in Figure 3.8a. There are eight objects,
greater than the maximum number of entries allowed for each node, which is three.

34

www.manaraa.com

Chapter 3 Efficient Access to Spatial Data

Therefore the scene has to be decomposed. There are many suggested ways to
decompose the object space (three of which are reported by Guttman [39]). One

method is to minimise the total area of the bounding rectangles formed as a result of
the decomposition. This can have the effect of reducing the average number of nodes
visited during subsequent searches of the tree, when compared to other methods.

In the example presented here, the object space is divided into two rectangular areas,
Rl and R2, each containing four objects. Both Rl and R2 need to be decomposed
further due to the fact that they also contain more than the maximum number of objects
allowed. Four new regions, R3, R4, R5 and R6 are thus formed (Figure 3.8b). Each of
these regions contains 2 objects. The corresponding nodes are therefore leaf nodes and
contain pointers to the appropriate objects (Figure 3.8c).

Any search upon the R-tree descends the tree from the root in a manner similar to a
B-tree search (with the difference being that more than one sub-tree under a node
visited may need to be searched). For example, consider a search for all objects lying

within the query window as shown in Figure 3.9.

Quer, rr === =ill
8II Window 1

Iý II

r---- R2
II3 III------I I

III
14 III

iI R4 III R6 II
I Iý =__ -JI

611
ý-= L_ _J

Figure 3.9 - Searching for objects in a query window.

The query window intersects Rl and therefore each of its child nodes need to be

searched. R3 is also intersected giving objects 1 and 2 as possibly lying within the area
of interest. R4 is not intersected by the query window and therefore objects 3 and 4 can
be eliminated from the search. Finally, R2 does not lie within the query window and
therefore no further search in this section of the tree need take place.

An alternative to the R-tree is the R+-tree [41], which avoids overlap among bounding

rectangles by splitting them into smaller sub-rectangles. The result is that there may be

several paths starting at the root to the same object. This leads to an increase in the
height of the tree, thus taking up more space. However, data retrieval time is speeded

35

www.manaraa.com

Chapter 3 Efficient Access to Spatial Data

up.

3.3.4 The Grid File.

The grid file [42] is a spatial data structure based on the principle of dividing space
into rectangles, which are not necessarily equal sized (Figure 3.10). Its main objectives

are to retrieve records from disk with at most two disk accesses and to handle range
queries efficiently. Rectangles, or grid blocks, are analogous to the cells of the fixed grid

method, and each is related to an area of disk storage, known as a bucket. Buckets will
have a fixed length, the length of which is defined in terms of the number of primary
data items the bucket can accommodate. The form which the primary data item takes,
be it a point, a line, a polygon or more complex object, is not of concern here.

Grid Directory

10

8

5

0

D " B" B

D ý Eý E

"
C F

" " A "

046 10

Linear scales

x: 046 10

y: 058 10

Data Buckets

Bucket Name Record 1 Record 2

A 1.9,2.6 3.8,3.4

B 4.8,8.7

C 4.8,1.2

D 1.7,5.2

E 6.6,6.3

F 7.1,1.2 0.9,9.6

D B B

D E E

A C F

Figure 3.10 - The grid file. In this example there is a bucket size of 2, with 9 grid blocks

resulting in 6 storage buckets. Dashed lines partitioning rectangles indicate grid blocks

sharing a data bucket.

Efficient access to data buckets is provided by means of the Grid Directory, which
consists of two parts. The first is a dynamic 2-D array containing one entry per grid
block. The array element values are pointers to the relevant data buckets, which may in

some circumstances be pointed to by more than one array element. Thus a data record
may be retrieved in two disk accesses, one for each of the Grid Directory and data
bucket. The second part of the Grid Directory consists of two 1-D arrays, called linear

scales, which define the actual size of cells (grid blocks) in the x direction and y
36

www.manaraa.com

Chapter 3 Efficient Access to Spatial Data

direction. Thus spatial queries are supported via an initial search of these linear scales,
which are usually located in main memory.

The grid file has good dynamic properties. If a data item is added to a bucket which is

not full, the update operation is trivial. Adding to buckets which are full can take one
of two courses. If the bucket in question is referenced by more than one grid block, then
the bucket may simply be divided into two buckets and the relevant Grid Directory

entries updated. If the bucket is referenced by only a single grid block, then the insertion

of the new data item will involve the creation of additional grid blocks. This is

achieved by adding a division line to one of the linear scales. In the case of deletion, a
merging process is carried out analogous to the splitting process for insertion.

3.4 Summary and Conclusions.
The main aim of this chapter has been to introduce the idea of spatial access data

structures. This has been achieved through a review of four such data structures,
namely, the fixed grid, the quadtree, the R-tree and the grid file. Two of these data

structures form the basis of spatial access techniques employed in the data models and
database implementations discussed in later chapters. An adaption of the fixed grid is
used in the multi-scale data model described in Chapter 5 and the corresponding
database implementations described in Chapter 6. The main reason for using the fixed
grid is the ease with which it can be implemented. In Chapter 7a quadtree approach is

adopted in the implementation of an Implicit TIN multi-scale database. In this case the
quadtree is chosen due to its particular suitability to the Implicit TIN reconstruction
algorithms. The reasons for choosing the fixed grid and quadtree methods are
discussed in greater detail in the appropriate chapters.

37

www.manaraa.com

Chapter 4

Multiresolution Representation
of

Spatial Data

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

4.1 Introduction.

Maps are required, and therefore produced, at a variety of scales. Section 4.2 is
concerned with topographic data and will begin by introducing the notion of scale,
before going on briefly to discuss cartographic generalisation. Automated generalisation
is then considered, with detailed consideration being given to automated line

simplification. In particular, the Douglas-Peucker algorithm is described, its relative
advantages and disadvantages being outlined. Following this, methods for storing
topographic data at multiple scales are discussed, with mutli-scale data structures
being looked at in detail. Section 4.3 concerns itself with the generalisation and multi-
scale data representation of terrain data. Special attention is given to hierarchical
triangulations, in particular the Delaunay pyramid. Finally, Section 4.4 gives a
summary of the chapter and an indication of which of the algorithms and data
structures are to be used in the design of the integrated multi-scale data model.

4.2 Generalisation and Scale.
Cartographic generalisation can be thought of as the transformation of the elements of
a map so that it will remain legible and meaningful at reduced scale. The scale of a map
will depend upon its intended use and the availability of suitable source data from
which the generalised map is derived. At present most generalisation is carried out
manually by expert cartographers and is arguably 'the most intellectually challenging
task for the cartographer' [43].

4.2.1 Generalisation Operations.
There are six main generalisation operations, namely, selection, combination,
simplification, exaggeration, symbolisation and displacement [44,45,46,47,48]
(Figure 4.1). For example, consider a group of polygons, representing a village perhaps,
on a large scale map. On a small scale map certain of these polygons may not be

considered significant enough to appear, and are therefore not included (selection). It
may also be appropriate for those polygons that remain to be joined together in some
way to form a single polygon (combination). At the next smallest scale the polygon
could be replaced by a rectangle (simplification). Depending upon the intended use of
the map, this rectangle might also be scaled in some way (exaggeration). At a still
smaller scale the rectangle might be replaced by a single point (symbolisation). It may
also prove necessary to move a map object (in this case a polygon, a rectangle or a
point) during the generalisation process (displacement). This is because many objects in

a map appear at a much larger scale than their true ground scale hence causing
geographical interference.

4.2.2 Automated Generalisation.
A great deal of cartographic research is currently being carried out in an attempt to find

39

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

automated solutions to each of the previously described generalisation operations with
much work on the subject appearing in the literature (see, for example, [44,45,46,47,
48]). For practical reasons, this thesis will restrict itself to dealing with line
simplification.

13 0
HD ýý

(a)

oý K I

(c)

0

(e)

(d)

"

"

(J)

Figure 4.1 - The six main generalisation operations. (a) Selection. (b) Combination.
(c) Simplification. (d) Exaggeration. (e) Symbolisation. (ft Displacement.

4.2.3 Automated Line Simplification.
When a small scale map is derived from a large scale geographic data set, only
important objects are selected. This section is not concerned with how important

objects come to be selected, it is assumed that this has already been done, either
automatically or manually. However, the lines from which these objects are made up
will often be too detailed at their original scale, the detail being lost due to the limited

resolution of the required scale. It is better to use fewer points to represent the lines. It
is therefore necessary to apply a line simplification algorithm to each of the lines from

which the objects are made up. A number of techniques will now be reviewed. In each
case no account is taken of the nature of the phenomena represented by the line (in

reality a cartographer might use a different set of rules to simplify a line representing a
river to those used for a line representing a road).

(b)

H

40

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

4.2.3.1 Algorithm Overview.
The generalisation, or simplification, of a line can be regarded as a reduction in its
detail while maintaining its character. The degree of simplification will be reflected in
the amount of detail removed and hence the scale suitability of the representation.

When dealing with automated line simplification, two approaches can be taken,
namely, point selection and smoothing. Point selection involves choosing points from
the original line thought to be relevant at the smaller scale. Smoothing will invariably
produce a simplified line which contains points not present in the source line. In this
thesis generalisation is being performed in the wider context of a multi-scale data

model, wherein data is to be minimised. It therefore follows that a smoothing algorithm
is not suitable since points would be produced for inclusion in the smaller scale
representation which are not included at the larger scale. This is not in keeping with the
hierarchical distribution of points indicative of a multi-scale data model. It appears
more appropriate to use a point selection algorithm.

Reviews of line generalisation algorithms have been given by McMaster [49,50],
Zoraster [51] and Abraham [52]. It is reported that point selection algorithms can be
broadly classified into two groups, namely, global and local. Global point selection
algorithms act upon the entire line as a single entity whereas local algorithms examine
subsets of points in turn.

A simple local line simplification algorithm is the nth point algorithm [531 which
involves the selection of every nth point from the source line. The value of n can be
adjusted to suit a specific scale. It has the advantage of being easy to implement but is

widely recognised as not being cartographically correct.

More sophisticated local algorithms have been produced, an example of which is that

suggested by Jenks (54]. This considers sets of three points in turn and requires the user
to define a minimum distance between points 1 and 2 (MINI), a minimum distance
between points 1 and 3 (MIN2) and a minimum angle (MINA), defined with regards to
an angle, A, subtended by the extension of line 12 (from point 1 to point 2) and line 23
(Figure 4.2). If, for any given set of three points, line 12 is less than MINI and line 13 is
less than MIN2, point 2 is rejected. If line 12 exceeds MINI but is less than MIN2, the

angle A is inspected. If A is less than MINA then point 2 is rejected.

41

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

3

angle A

12

MINI

1 MIN2

MINA

Figure 4.2 - The criteria used in Jenks' line simplification algorithm.

The algorithm starts with the first three points in the line and works its way along the
line until point 3 is the last point in the line. A danger with this and similar methods is

that slow curves will tend to be over-simplified.

4.2.3.2 The Douglas-Peucker Algorithm.
The global approach appears to offer results which are more satisfactory in

cartographic terms. The Douglas-Peucker algorithm [55] is a global line generalisation
algorithm which retains the shape information of a line as the number of points
describing it is reduced [49] and at present seems to be the most widely used. Harris
[56] concludes that this algorithm performs very well in a test designed to see if it

would select the same critical points as a trained cartographer.

The algorithm begins by taking the first and last points of the line entity (Figure 4.3a)

and joining them by a straight line segment (Figure 4.3b). All intermediate points are
then searched to find the point most distant from this line segment (Figure 4.3c). If this
distance is less than or equal to a pre-defined tolerance value, the line can be

represented by the first and last points. If however the distance exceeds the tolerance

value, the line is split in two about the most distant point and two new line segments
are formed (Figure 4.3d). One line segment will be defined by the first point and most
distant point, the other by the most distant point and the last point. The two line

segments are now considered in turn and dealt with in the same way as the original
straight line. The procedure is repeated recursively until no line segment has
intermediate points lying further away than the tolerance distance (Figures 4.3e to
4.3g).

42

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

I;
-

(a)

1

60

03

40 2

(c)

ý- -

1

I Error tolerance

1

1

Y2

(g)

2

Figure 4.3 - The Douglas-Peucker algorithm applied to a line. (a) Original line. (b)
Select first and last point. (c) Point 5 is most distant. (d) Distance of point 5 from line

segment (1,7) exceeds tolerance value and therefore is selected for inclusion. (e) to (g) Repeat,

recursively, for line segments (1,5) and (5,7).

4.2.4 Representing Line Data at Multiple Scales.
Access to line data at variable scales can be achieved either by storing multiple

43

60 05

03

40 2

(b)

6O 5

03
7

1

40 02

(d)

I; -

-z

(e)

ý_

Yz

ýfl

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

versions of each line at predetermined scales; by storing a single large-scale version
from which smaller scales are derived using generalisation algorithms; or by means of a
multiresolution data structure specifically adapted to retrieving varying degrees of
detail. Storage of multiple versions results in significant storage overheads owing to
duplication of the constituent vertices between different versions. Retrieval from a
single version could incur major processing overheads when deriving a representation of
much smaller scale than the original line.

Multiresolution data structures represent a compromise between the approaches. Two

such data structures, specifically designed to store cartographic line data at multiple
scales, are the line generalisation tree and the BLG-tree.

4.2.4.1 The Line Generalisation Tree.
The line generalisation tree [57,58,59], which is closely related to the strip tree [60], is

a multiresolution data structure in which vertex duplication is minimised, while
providing selective access to those vertices required for a particular scale
representation. Each level in the tree corresponds to a particular level of scale
significance, the required scales having been determined in advance.

The tree is constructed by firstly assigning to each point a level of scale significance,
using the Douglas-Peucker algorithm (or some other point selection algorithm), and then

storing that point at its corresponding level in the tree. Therefore, at each level, only
those points which are intermediate to points at the previous level in the tree are
stored. The order of points within a linear feature can be maintained by either
associating with each point a left and right control value which records the number of
adjacent intermediate points at the next lower level or by storing a sequence number for

each point which records its position in the original line. Although these methods
introduce additional data in the form of either the control values or the sequence
numbers, it significantly reduces the data overheads of multiple line storage [52]. An

example of a line generalisation tree using sequence numbers is shown in Figure 4.4.

44

www.manaraa.com

Chapter 4

(a)

21
0

12 14 05

8p
p Oil

lp p 67p
2p 30

12 14
0

8
10 6

30

Multiresolution Representation of Spatial Data

4 21

4 9(1), 4(13)

21 4 12 (5), 2 (9), 21 (12)

I 05
Oil

2

11 1(3), 14 (6), 5 (11)

(c)

3,

(b)

Figure 4.4 - The Line Generalisation Tree. The example shown consists of three levels and
adopts the sequence number method. (a) Original line. (b) The result of applying the

Douglas-Peucker algorithm. (c) The line generalisation tree representation.

4.2.4.2 The BLG-tree.

A data structure with close similarities to the line generalisation tree is the BLG-tree
[61,62]. This is a binary tree in which each node represents a line segment
accompanied by the most distant intermediate point of the original line, its distance,

and pointers to the two line segments defined by its current start and end points and
the intermediate point. The BLG-tree differs in particular from the line generalisation
tree in that the latter employs discrete levels of generalisation. Figure 4.5, taken from

van Oosterom [62], shows a line and its corresponding BLG-tree.

45

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

7

8

1 4.4

34569
1 ---------------- 10

7 (4.4)

6 (2.5) '8 (1.2)

1 (1.0) >9 (0.9)

(0.3) ti 5 (0.3)

2 (0.3)

Figure 4.5 -A line and its corresponding BLG-tree.

4.3 Hierarchical Surface Models.
As is the case with topographic data, the resolution at which terrain data is required
will often be dependent upon the application for which it is required. The same
disadvantages associated with multiple representation and generalisation at run-time
also apply. Therefore, a surface model capable of retrieving data according to the need
of the application, with limited data, duplication and no necessity to perform
generalisation at run-time, is required. Thus several hierarchical surface models, which
attempt to meet these criteria, have been developed in recent years. Such hierarchical

models are usually based on recursively subdividing the surface domain into nested
triangulations or rectangles. Hierarchical surface models can therefore be classified into
two distinct groups, namely, hierarchical triangulations and quadtree-like models [15].
Quadtree-like models (such as [63,64]), which make use of domain partition
techniques based on rectangles, are suited only to uniformly sampled data points. It is
the intention of the data model being designed to cater for irregularly sampled data. It
therefore appears that a triangle-based hierarchical model offers the most flexible
description of a topographic surface.

4.3.1 Ternary and Quaternary Triangulations.
The simplest, and most common, type of hierarchical triangulation schemes are the
ternary and quaternary triangulations, examples of which are shown in Figures 4.6 and
4.7 respectively. Consider a set S of points in the plane. A ternary triangulation of S is

46

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

represented by a ternary tree, the root of which corresponds to an initial enclosing
triangle t1, whose vertices (PI, p2, p3) belong to S. All projections of unused points, S-
(Pu' p21 p31 must be contained within t1. The remaining levels in the tree are a result of
combining a currently unused point, pq, with the vertices (p;, pj, Pk) of its containing
triangle, t,, to form three new triangles (p;, pq, pj), (p1, pq, Pk) and (pk, pq, p). These
three additional triangles become the child triangles of t,, and each may in turn become

parent triangles to three other child triangles.

In a similar fashion, a quaternary triangulation of S is described by a quaternary tree,
the root of which again corresponds to an enclosing triangle t1. Subsequent child
triangles are formed by subdividing a triangle t,, defined by its vertices (p;, pj, Pk) into
four subtriangles. This subdivision is achieved by firstly locating three unused points of
S, py, pr and ps, which lie on, or near to, the mid-point of each of the edges of the
parent triangle to-be t,. The points pi, Pj' Pk" Pq Pr and ps are then joined to form the
four child triangles (pq, p;, P), (Pr' Pk' Ps), (Psi P1. Pq) and (pq, pr, p8). For both
triangulation schemes, the process of subdividing will stop for a particular branch in
the tree when either no more suitable remaining points can be found or the error Ei

associated with the triangle t; currently being processed is less than or equal to a pre-
defined threshold value E. The value of E;, the error associated with triangle t;, can be

expressed as follows. Let Ui be the set of currently unused points of S whose
projections lie within t;. Then,

E; = max { e(p,) I pj in U; }, where e(pj) =I foxy yj) - zi I.

The function f uses the plane defined by the three vertices of ti to interpolate the z
value for a given ()j, yj) coordinate pair, the stored z value of which is z,.

47

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

1)

1 3

Figure 4.6 -A ternary triangulation and its corresponding ternary tree.

For the hierarchical triangulations described, it is seen that each triangle t;, not
necessarily a leaf triangle, has an error E; associated with it. Therefore, when a
triangulation is required at a specific resolution, defined in terms of an error threshold
Et, it is only necessary to descend each branch of the tree to a depth where the error E;
of the triangle tj at that level is less than or equal to Et.

The ternary triangulation is well suited to handling irregularly distributed data but will
be prone to produce triangles which are elongated. These long, thin triangles are
undesirable since for the purposes of numerical interpolation and visualisation it is

more appropriate to have triangles which are as equiangular as possible. When working
with data points which are uniformly distributed, the quaternary triangulation is able
to provide triangles which behave well with regards the equiangular requirement.

48

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

However, since a triangle in a quaternary triangulation may have more than one
neighbour along one of its edges, it is liable to produce discontinuous surface
approximations.

1

1)

4
3

Figure 4.7 -A quaternary triangulation and its corresponding quaternary tree.

4.3.2 Error-Directed Point Selection.
A hierarchical triangulation is a surface approximation based on a subset of a given set
of data points S. It is usual to have associated with the triangulation a maximum
permissible error E, where E= max (E; }. It is desirable to optimise the triangulation

with respect to the number of vertices included. Finding the optimal triangulation is not
feasible since an exponential number of possible triangulations must be evaluated.
However, the error-directed point selection method proposed by De Floriani et al [65]
(hereafter referred to as De Floriani's point insertion algorithm), used as part of the

process of building a ternary triangulation, while being non-optimal, is satisfactory
with regards the number of points needed in the triangulation. In this method, the
triangulation is built in a way similar to that of the previously described ternary
triangulation. However, in this case the order in which points are inserted into the

49

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

triangulation is considered important. Therefore, for any triangle ti, with E; >E and Ui

non-empty, a decision has to be made concerning which point p is to be chosen from Ui
for insertion into ti. The principle is to choose that point which is furthest (vertically)
from ti. This method of point selection can be regarded as a 2.5-D equivalent of the
Douglas-Peucker algorithm.

4.3.3 The Delaunay Pyramid.
The ternary and quaternary triangulations, and certain other hierarchical triangulations,
such as those presented by Gomez and Guzman [66], Barrera and Vazques [67] and
De Floriani et al [65], are each deficient in one of two ways. They either produce
approximations which are numerically inaccurate, because of the elongated shape of
their constituent triangles, or are well-suited only to regularly sampled data [15]. A
hierarchical model, provided by De Floriani, which overcomes these difficulties is the
Delaunay pyramid [15]. As the name suggests, this is a hierarchical surface model
based on the Delaunay triangulation, and is therefore suited to irregularly sampled
data and produces the most equiangular set of triangles. The Delaunay pyramid, in its

original form, consists of a hierarchy of Delaunay triangulations, each level of which
contains progressively greater detail (Figure 4.8). Each triangulation Tj has an error E,

associated with it. Therefore a pyramid consisting of m levels is represented by a
sequence of Delaunay triangulations [To, T1,, Tm_1] where Ei <= E;. 1, i=1,2....., m-
1.

The pyramid is built from a set of points S by firstly constructing an initial constrained
Delaunay triangulation. This will include those points of S which define the convex hull

of S or are the most important surface-specific points (peaks, pits and passes) and
lines (ridges and valleys). In the scheme described by De Floriani each triangle is
defined by its three vertices and its three adjacent triangles (although it is pointed out
that any other of the 9 possible triangle-vertex-point relationships could be used).

50

www.manaraa.com

Chapter 4

4
F1

5 EI
Al L

V
U1

BI

C1

1

4

Multiresolution Representation of Spatial Data

3

2

3
F2

5 ez
L:

lz
Kz H2

6 nz

7 62 1

4 NJ

P3

Cý
Ma

A]
J6

D3
p

Mt

7G,
1

2

3

2

Adjacent Child
Id Type Vertices Triangles Triangles

Al 0 154 B1 F1 - A2
B1 0 165 Cl El Al G2 H2 J2 K2
C1 0 126 - D1 B1 G2 H2
D1 0 623 Cl - El D2
El 0 356 F1 B1 D1 E2
F1 0 345 - Al E1 F2

A2 1 K2 F2 - A3
D2 1 H2 - E2 D3
E2 1 F2 J2 D2 L3 M3
F2 2 L3M3N3P3
G2 0 127 - H2 K2 G3
H2 0 267 D2 J2 G2 H3
J2 0 657 E2 K2 H2 J3
K2 0 751 J2 A2 Q K3

A3 1 K3 P3 - D3 1 H3 - M3
G3 2
H3 2
J3 1 L3 K3 H3
K3 2
13 0 568 J3 M3 P3
M3 0 638 D3 N3 L3
N3 0 834 NO - P3
P3 0 584 L3 N3 A3

Figure 4.8 - An illustration showing the inter-level relationships that exist in the
Delaunay pyramid.

Pyramid construction proceeds by taking a currently unused point p from the set S,

and adding it to the approximated surface, which is then re-triangulated. The point p
is the point furthest away (vertically) from the approximated surface. The process of
adding a point and re-triangulating is repeated until each triangle t has an associated
error e less than or equal to E0. The next level, initially identical to the first level, is then
created. Further points are added from S until the error threshold for that level is

reached. New levels continue to be added to the pyramid until the most detailed level
(level m-1) has been created to the required accuracy.

It is likely that some of the triangles at a particular level will be completely retained in

the next lower level or will differ only in regard to their adjacent triangles. The
Delaunay pyramid overcomes data duplication by storing triangles as either internal,

boundary or external. An internal triangle is defined by its vertices and its adjacent
triangles. Boundary triangles will consist of a pointer to a parent triangle, from which
its vertices will be obtained, and a reference to its three new adjacent triangles. An

51

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

external triangle is completely described by a pointer to a higher level triangle. Each
triangle within a level also references those triangles at the next more detailed lower
level which intersect it. This assists hierarchical spatial search within a Delaunay

pyramid to determine which triangle a given point lies in. An example of a three-level
Delaunay pyramid is given in Figure 4.8.

It should be noted that the storage benefits gained by adopting the internal, boundary

and external triangle approach is fully realised only when changes in detail between

levels are small. This is because large changes in scale between successive levels will
cause many of the triangles in the parent triangulation to be replaced by new, non

space-saving internal triangles in the lower level triangulation.

4.3.4 Adaptive Hierarchical Triangulation.
The Delaunay pyramid, along with all terrain models based solely on Delaunay
triangulation, tends to ignore the third dimension when deciding upon the topological

relationship between points, and may therefore produce edges that contradict the
topology of the surface being modelled. Scarlatos and Pavlidis [68] attempt to

overcome this problem by proposing a non-Delaunay triangulation scheme, termed
adaptive hierarchical triangulation, which produces a multiresolution terrain model
that adapts itself to surface characteristics. However, this method does not appear to
be suited to the inclusion of topographic (non-elevation) feature data in the model since
the algorithm it employs is dependent upon all data points having an elevation value.

4.3.5 The Constrained Delaunay Pyramid.

To counter the apparent inadequacy of the Delaunay pyramid, De Floriani and Puppo
[22] have proposed a dynamic, easy-to-code algorithm to produce a constrained
Delaunay pyramid (CDP). The CDP modifies the original Delaunay pyramid by

allowing insertion of chains of edges belonging to surface edges. The ability to introduce

constraints into a pyramid ensures that specific linear features, such as valleys and
ridges, can be retained as connected edges within each level of the pyramid. In

principle, this mechanism for constraining the triangulation facilitates the inclusion

within it of any point, line or polygon feature, whether physical or cultural. Details

regarding the insertion of constraining edges into an existing triangulation have been

given in Chapter 2.

4.4 Summary and Conclusions.

This chapter has attempted to provide an introduction to the subject of automated

map generalisation. It has suggested that, at present, multi-scale data structures offer
the most viable approach by which GIS can cater for spatial data at multiple levels of
generalisation. Of the data structures described, two are selected for use in the

52

www.manaraa.com

Chapter 4 Multiresolution Representation of Spatial Data

integrated multi-scale data model and database implementations described in later

chapters. It is thought that at present terrain data can best be catered for by employing
the error-directed point selection technique to assist in the construction of a CDP.
Having decided to adopt the CDP approach for terrain data storage it follows that the
line generalisation tree (in conjunction with the Douglas-Peucker algorithm) offers the

most appropriate technique for storing (and producing) multiresolution line data. This

is because the CDP and line generalisation tree both employ fixed levels of detail. It

might be argued that the BLG-tree offers greater flexibility than the line generalisation
tree in that detail levels are not fixed, and therefore a greater range of scales are
immediately available for retrieval. However, the BLG-tree does not integrate well with
the CDP in its present form. Note also that a partial generalisation at run-time
approach, used in conjunction with the CDP and line generalisation tree, would
provide for the retrieval of the full range of scales. This approach has been adopted in
the scale-independent database presented by Abraham [52].

53

www.manaraa.com

Chapter 5

A Multiresolution Topographic
Surface Model

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

5.1 Introduction.

This chapter outlines the design of a data model, or data storage scheme, suited to the

efficient storage and retrieval of terrain and topographical feature data at multiple
scales. The data model, which is based upon several of the data structures described in

earlier chapters, is described in Section 5.2. Section 5.3 provides detail, in pseudo-code
form, of the data model construction algorithm. In light of recent criticism of the
Douglas-Peucker algorithm, Section 5.4 provides a number of reasons as to why it has

been adopted for use in this project. Section 5.5 draws attention to some of the
limitations of the data model described in Section 5.2, and gives some indication as to
how these limitations can be removed. A conclusion and chapter summary in given in
Section 5.6.

5.2 A Hierarchical Model for both Topographic and Terrain Data.
Previous chapters have given details of data structures suited to either the efficient
multi-scale storage of topographic feature data, such as the line generalisation tree, or
to the efficient multi-scale storage of terrain data, such as the constrained Delaunay

pyramid (CDP). The algorithms developed to produce generalised versions of
topographic data and terrain data have also been reviewed. This section introduces a
new data storage scheme, termed the Multiresolution Topographic Surface Model
(MTSM), which allows for multi-scale storage of both data types in a single data

model.

5.2.1 Model Overview.
The MTSM is a spatial access scheme suited to the efficient storage and retrieval of
terrain and topographic data at multiple scales. Two previously described data

structures, namely the CDP and the line generalisation tree, form the basis of the

model. The CDP is chosen due to its ability to represent surfaces at multiple levels of
detail; incorporate points located at arbitrary coordinates; and include constraining
features. The line generalisation tree, as indicated in Section 4.4, is preferred to the
BLG-tree due to the fact that, as with the CDP, it employs discrete levels of detail.

The vertices, or points, from which the topographic data is made up (representing

point, line and polygon features) are merged with the terrain points defining the surface
to form a single data set. These combined points are then used to construct a CDP.
Each line feature is represented by a line generalisation tree. A unique aspect of the

work is the ability to include topologically structured features, such as pylons (point),

railways (line) and county borders (polygon) within the pyramid. In the case of line

and polygon features, these occur as chains of constrained edges within the pyramid.
These are in addition to those surface features necessary to characterise the shape of
the surface, such as ridges and valleys.

55

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

Point, line and polygon features, all of which are embedded as constraints within the
pyramid, are arranged in a hierarchical manner. Each polygon is stored as a collection
of references to one or more lines, each of which in turn reference, via a line

generalisation tree, vertices within the pyramid. Point features are represented as direct

references to these vertices. This approach is based on the point, line and polygon
dictionary method described in Section 2.3.2. In certain cases, constrained edges within
a triangulation may represent more than one feature. For example, a national boundary

very often coincides with some physical boundary, such as a river. Furthermore, objects
of interest may consist of sets of point, line and polygon features. This can be
illustrated by considering a factory as an object of interest, which is itself made up
from point, line and polygon features. To accommodate such occurrences, while at the
same time minimising data duplication, an additional entity, referred to here as an
object, is introduced into the data structure hierarchy. Each object maintains a list of
pointers to the appropriate point, line and polygon features from which it is made up.
For the first example, the physical boundary and the political boundary, each stored as
a separate object, would refer to the same embedded feature or list of features. The
factory, also stored as an object, would refer to each of its constituent point, line and
polygon features.

A diagrammatic summary of the MTSM is given in Figure 5.1. The Object List consists
of a series of object descriptions, each of which represents a single object. Each object
description is composed of a unique object identifier, attribute data which describes

what the object is and to what class of object it belongs, plus a list of references to the
polygon, line and point features from which the object is made up. Polygon
descriptions, which are stored in the Polygon List, are each made up of a unique
polygon identifier plus references to the relevant constituent line parts. Line
descriptions are held in the Line Lists. The series of n line descriptions for a particular
line correspond to the n levels of the line generalisation tree for that line. Each
individual line description represents a single level in the line generalisation tree and is
made up of a unique line identifier, a list of references to the points which become

relevant at that level and a list of corresponding sequence numbers indicating the
position of each point in the original line.

56

www.manaraa.com

Chapter 5 A Multiresolution Topographic Surface Model

Polygon List l'OiIt list

Point description.
Point description.

I Mt, I

Line Lists

LEVEL I

Line description.
Line description.

Point description
Point description.

LEVEL 2 LEVEL. n

Line description. Line description.
Line description. " ine description

ri, ingle Lists

LEVEL 1 LEVEL. 2

Triangle description. Triangle description.
Triangle description. Triangle description.

Internal Lists

LEVEL n

'I rian} Ir description
"l riangle description.

LEVEL I LEVEL 2 LEVEL n

Internal description. Internal description. Internal description.
Internal description. Internal description. Internal description.

Boundary Lists

LEVEL I LEVEL 2 LEVEL n

Boundary description. Boundary description. Boundary description.
Boundary description. Boundary description. Boundary description.

Object Grids

LEVEL I LEVEL 2 LHVEL n

Cell description. Cell description. (ell description.
Cell description. Cell description.

..... (ell description.

Triangle Grids

LEVEL 1 LEVEL 2 LEVEL n

Cell description. Cell description. Cell description.
Cell description. Cell description. Cell description

Figure 5.1 - The multiresolution topographic surface model. In this case the model is

shown with n levels of scale.

57

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

The Point List stores a description for every point (terrain and topographic)
represented in the data model. A point description comprises of a unique identifier, a
value indicating the level at which the point is first included in the model and the x, y
and z coordinates of that point. There is a Triangle List at each level of the data model.
Each of these lists represent a level in the CDP and stores the details of each triangle
present at that level. A triangle description at a particular level is made up of a unique
triangle identifier, a value indicating what type of triangle is being represented at that
level (internal, boundary or external) plus a reference to the appropriate description in

either the Internal List or Boundary List. Each internal description holds the full

geometry and adjacency information for internal triangles. Boundary descriptions store
the adjacency information for boundary triangles. The Object Grids and Triangle Grids

are described in the following section. The relationships between topographic data
types is illustrated in the single-scale data model shown in Figure 5.2. With regards to
topographic data it should be noted that no topological information is stored.

DATA MODEL
Object List

MAP 2

16

4

3

Id Description lass Polygons Lines Points

1

2

Severn

Wal/Eng

River

order

-

-

1,2

1,2

-

-

Polygon List

Lines

Line list

Points

1

2

3,4,5

6,2,1

Point List

Id X Y

1 500.0 200.0
2 520.0 215.0
3 470.0 120.0
4 455.0 160.0
5 485.0 174.0
6 545.0 200.0

Figure 5.2 -A single-scale topographic data model, made up from object, polygon,
line and point entities. In this case there are no polygon parts.

It is noted that Kraak and Gazdzicki [69] present a triangle based terrain model
capable of representing both the terrain surface and spatial objects related to it. This
model is applied to what they term Cartographic Terrain Modelling (CTM). The
fundamental difference between CTM and the model presented in this chapter is that
CTM is limited to single-scale representation of data.

58

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

5.2.2 Providing Spatial Access to the Model.
It is important to ensure efficient access to the data model. Since the intended use of
the model is to store spatially extensive data, spatial indexing of some sort is required.
When deciding on a suitable indexing scheme an important consideration is the type of
queries which will typically be presented to the eventual database. Two fundamental

queries are of the form 'Retrieve all data of a particular type within a particular area'
and 'What data items lie at a particular point V. Each of the four data structures
reviewed in Section 3.3 have been shown in the literature to be suited to such queries.
However, the parent triangle to child triangles pointer method employed by De Floriani
[15] in the Delaunay pyramid would appear to be suited to only queries of the latter
type. For the purposes of this thesis, two separate indexing techniques have been
implemented. The first, a regular grid overlay scheme, is described in the following

section. The second, based on the quadtree data structure, will be detailed in Chapter
7.

5.2.2.1 The Regular Grid Overlay Indexing Method.
Efficient access to the hierarchical model is provided by introducing spatial indexing
at each level in the pyramid. The method described here employs a regular grid overlay
scheme, in which each grid cell maintains a list of references to all data which intersect
it. This indexing technique, which is based on the fixed grid method (Section 3.3.1),

replaces the parent triangle to child triangles pointer method employed by De Floriani
[15]. The regular grid overlay technique differs from the fixed grid method in that
whereas the cells in the latter correspond to areas of storage in which data items
themselves are stored, the cells in the former contain references to data items which
themselves are stored elsewhere.

A decision has to be made as to which of the data in the model is to be spatially
referenced. In order to arrive at this decision it is again necessary to consider the type
of query the data model will have to satisfy. Four typical queries need to be catered for,

namely 'Retrieve all objects within a particular area', 'Retrieve all triangles within a
particular area', 'What object lies at a particular point ?' and 'What triangle lies at a
particular point T. Therefore, it becomes apparent that spatial indexing is required on
objects and triangles. Also, since the spatial extent of certain objects may differ
between levels (due to the generalisation of constituent line parts) and certain triangles

may be relevant to some levels in the pyramid and not to others, the spatial access
structure has been separated into levels. Therefore, at each level in the pyramid there is

a triangle grid (Figure 5.3a), referencing all triangles relevant to that level, and, similarly,
an object grid, referencing all, objects (Figure 5.3b).

59

www.manaraa.com

Chapter 5

0 0 10 20

N3

P3 7
M3

L3

. 1 11
A3

D3
J3

K3
\

H3
0 2 12 22

I

L

G3

A Multiresolution Topographic Surface Model

P3

N3

L3
M3

1 11
A3

D3
3 \ /

H3

12 2

G3

00 10 20

2
10

01 11 21
5

O
4

- --
6

F 1

02 12 22

Cell
Address

Intersecting
Triangles

00 A3P3N3L3M3
10 N3L3M3
20 D3 M3 N3

01 A3P3L3J3K3
11 L3 J3 K3 M3 H3 D3
21 D3 M3 H3

02 A3 K3 G3
12 K3G3H3J3
22 H3 G3 D3

(a)

Cell
Address

Intersecting
Objects

00 1
10 2
20

01 56
11 264
21 3

02 6
12 463
22 3

(b)

Figure 5.3 - Spatial indexing provided by the regular grid overlay method. (a) The
Triangle Grid. (b) The Object Grid.

An object or triangle is deemed to be related to a particular object cell or triangle cell,
respectively, if any part of that object or triangle intersects the cell. Each cell
description (Figure 5.1) will therefore consist of a x, y coordinate indicating the location

of the cell plus a list of references to all objects or triangles which intersect that cell. It is

clear that the number of cells in each spatial grid will determine the optimality of
searching operations. A dense grid will, in general, be more efficient in terms of search
time than a more refined grid. However, this benefit has to be weighed against the
resulting increase in storage requirements. McCullagh and Ross [70], when using a
similar type of grid structure to assist in constructing the Delaunay triangulation of a
set of points, suggest a grid which allows an average of four points per cell. In the

60

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

model described here, the number of cells within each grid varies according to the total
number of objects or triangles it references, following the approach described by
Franklin [71] for indexing lines for detecting intersections. A temporary grid index,

which references points, is also used for the purpose of efficient pyramid construction.

5.2.2.2 A Discussion Concerning Spatial Indexing.
Although the indexing scheme described in Section 5.2.2.1 lends itself to referencing all
occurrences of objects, and triangles, within a specified area, it does not take into

account the spatial extent of individual objects. Thus locationally specific retrievals
involving areally extensive objects could lead to large amounts of unwanted data
having to be read. This would be particularly true of high resolution data. This problem
could be solved by ensuring that individual object components, that is, the point, line

and polygon features from which an object is made up, be limited in size. This can be

achieved by segmenting any overly extensive line features and polygon features (or to
be more precise, the line features from which the polygon features are made up) into a
series of less spatially extensive line features. For example, an object, representing a
river, might originally have had a single reference to one spatially extensive line feature.
After segmentation has taken place, the same object will now have a list of references
to a series of less extensive line features, these having replaced the original line feature.
In order to take full advantage of the data segmentation it would now also be
necessary to spatially index line features, thus ensuring that only those relevant to a
particular query are retrieved. A further enhancement of this structure would be to
replace the regular sized grid with a data-adaptive indexing method such the bounding

quadtree [72]. This would ensure that no single cell references more than a preset
maximum amount of data (see Section 3.3.2).

The issue of spatially segmenting line data within a multiresolution model is quite a
topical one. The multi-scale line tree [52,58,59], an extension of the earlier line

generalisation tree [57,58,59], provides efficient spatial access to line data at various
scales. It achieves this by classifying the internal points of digitised lines into
hierarchies of scale-specific levels, which are themselves spatially segmented in a data-

adaptive manner, using quadtree cells. A recent data structure, the Reactive-tree [62,
73], also provides efficient storage and retrieval of geometric objects at multiple levels

of detail. By combining the R-tree [39], which provides efficient access to data objects
by storing bounding rectangle information with each object, and the BLG-tree [61,62],

the Reactive-tree allows both objects and the points making up the objects to be

retrieved on the basis of position and scale. A more recently published paper by Becker

et al [74] introduces the Priority Rectangle File (PR-file). Here, the points defining line

and polygonal objects are assigned levels of scale significance using a line generalisation

algorithm. These points are then stored in a data structure which combines certain
aspects of the line generalisation tree and the R-file [75]. Here the possible retrieval of

61

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

unwanted data is minimised by limiting the maximum number of points contained

within a single bounding rectangle, thus limiting the spatial extent of individual object

parts.

The type of spatial indexing method employed can be governed to a certain extent by

the characteristics of the data that is being included in the model. If individual line

features are likely to be spatially extensive it would be wise to consider a scheme which
is able to spatially segment individual data items. However, it may be that relative to

the total area being modelled, individual line features are not extensive. If this is the

case it would appear sensible to remain with a more simple approach. The author,

while admitting that the simplicity of his spatial access method is the sole motivating
factor for its use, is unsure as to whether a more elaborate scheme would significantly
improve the spatial search facilities provided by his model. It may be noted that the

recent work by van Oosterom [62,73] and Becker et al [74] provides examples of

multi-scale storage schemes which in the former case do not segment individual line
features while in the latter case their component vertices are grouped into rectangular

subdivisions. The relative efficiency of the two schemes is not known.

5.2.3 The Selection of Critical Points.
A method of deciding at which level, and then subsequently at all lower levels, a
particular point first appears in the MTSM has to be established. It will be governed by

either the point's relevance to a particular object or its significance in describing the

surface. The Delaunay pyramid selects points by means of an error-directed point
insertion algorithm (see Sections 4.3.2 and 4.3.3). Here, a point is included at a
particular level if the vertical distance of that point from the approximated surface is

greater than a given error tolerance for that level. In the MTSM, any point which does

not form part of a topographic object will be dealt with in this way.

Those remaining points, all of which form part of an object, present a more difficult

problem. The level at which a particular point of a line feature is inserted can be

generated by using a suitable line generalisation algorithm to classify the internal points

of the line feature into a specified number of levels of scale-related significance. The

method used here is that of Douglas and Peucker [55], which has proved successful in

retaining the shape information of a line feature as the number of points describing it is

reduced [49]. Another of its properties, essential in allowing a line feature to be stored
hierarchically, is that points selected for small scales are a subset of those used in a
larger scale representation. This algorithm is also suitable to some extent for simple

polygonal shapes. Generalisation of the points of more complex polygonal features,

such as buildings, into levels of scale significance cannot easily be achieved

automatically. The level at which these points are inserted would, under the present
version of our scheme, have to be determined manually.

62

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

It should be noted that each point forming part of a feature might also have a height

value associated with it which is used to evaluate the point's significance in describing

the surface. It is therefore possible that such points may be inserted at a higher level in

the pyramid than the level originally indicated by the object generalisation procedure.
Any object point which does not have a height value associated with it is assigned a
NULL height value.

5.3 An Algorithm for Building the Hierarchical Model.
A pseudo-code algorithm for building the hierarchical model is given in Figure 5.4

(Procedure CREATE_MULTI SCALE_MODEL). The algorithm makes use of a number

procedures, most of which are self explanatory. However, the details of Procedure

CREATE_CDP_LEVEL warrant special attention and are shown in Figure 5.5.

The model is constructed from a set of points S, containing all points defining the

surface and those forming part of an object, and a list of objects O. Each object is

defined by a list of references to its constituent point, line and polygonal features. The

algorithm begins by initialising each of the object and triangle grids. Next, a line

generalisation tree is constructed for each line feature, individual points having been

allocated a level of significance using the Douglas-Peucker algorithm. The algorithm
then proceeds to construct a CDP from the set S and the list O. Polygonal features

reference line features, which in turn reference points, via a line generalisation tree. Each

point which forms part of an object must be included in S and also have a level flag

associated with it. This level flag ensures that it is inserted at the correct level of the

pyramid, although it is possible that the point is inserted at some higher level according
to its importance in approximating the surface. Note that the procedure
CREATE_INITIAL TRIANGULATION only considers those points H of S which have

a height value associated with them. The procedure performs a Delaunay triangulation

of those points which make up the convex hull of H. This has the effect of omitting
from the multi-scale model any point which does not lie within the convex hull of H.

The reason for adopting this approach is to ensure accuracy when interpolating height

values for those object-defining points which do not initially have a height value.

Each object is inserted into a triangulation by sequentially inserting each of its line and

polygonal feature components (point components must already have been included).
Line and polygonal features are inserted as a series of straight line segments.
Algorithms for inserting points and straight line segments into a Delaunay triangulation

are given in the literature (for example, [22,21]). Brief descriptions of two such

methods have been given in Section 2.4.3.3 and Section 2.4.4, respectively.

63

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

Global Variables

L- list of line definitions
O- list of object definitions
S- list of point definitions

Procedure CREATE_MULTI_SCALE_MODEL(n, Error_V, Error_L)

/* n- number of levels */
/* Error_V - array of vertical error tolerances */
/* Error L- array of lateral error tolerances */

For each level i
INITIALISE-TRIANGLE-GRID(.
INITIALISE-OBJECT-GRID().

Endfor.
For each line 1 in L

CREATE-LINE-GENERALISATION TREE(l, n, Error_L, lgt(l)).
Endfor.
For each level i

ADD TO OBJECT_GRID(O, i).
Endfor.
CREATE INITIAL_TRIANGULATION(T1, S).
For each level i

CREATE_CDP_LEVEL(i, Ti, lgt, Error V(i)).
ADD TO_TRIANGLE_GRID(T1, i).
IfI* n, then

COPY TRIANGULATION(Ti, Tj+l).
Endif.

Endfor.

Endprocedure.

Figure 5.4 - The MTSM algorithm. This algorithm constructs the hierarchical model from a
set of points S and list of objects 0.

Note that following the insertion of constraints at a particular level it is necessary to
check if the triangulation at that level still lies within the required vertical error
tolerance threshold. This check is included due to the fact that the insertion of
constraining objects which contain, at the time, unused points can sometimes lead to an
increase in vertical error. Additional surface describing points are added, if necessary,
until the triangulation lies within the required threshold.

64

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

Procedure CREATE CDP_LEVEL(i, Ti, lgt, Error_Tol)

/* i- level number */
/* T1- triangulation at level i
/* lgt - list of line generalisation trees
/* Error_Tol - vertical error tolerance for level i

Finished = FALSE.
Do while (not Finished)

FIND-NEXT-POINT-TO INSERT(p, errorp).
If (point found) and (errorp > Error_Tol), then

INSERT_POINT(p, T).
Else

Finished = TRUE.
Endif.

Endif.
For each line 1 in lgt

RECONSTRUCT_LINE(lgt(1), i, temp-line).
For each currently unused point p at level i of lgt(l)

If z value of p= NULL_VALUE, then
INTERPOLATE HEIGHT(p, T).

Endif.
INSERT_POINT(p, T).

Endfor.
For each edge (pl, P2) in temp line

INSERT_EDGE(pl, P2, Ti).
Endfor.

Endfor.
Finished = FALSE.
Do while (not Finished)

FIND_NEXT_POINT_TO_INSERT(p, errorp).
If (point found) and (errorp > Error_Tol), then

INSERT_POINT(p, T).
Else

Finished = TRUE.
Endif.

Endif.

Endprocedure.

Figure 5.5 -A procedure to create a level in a CDP.

The CDP algorithm as presented by De Floriani and Puppo [22] is restricted in that it

only caters for non-intersecting straight line segments. This creates a problem when
introducing topographic features into the pyramid because their constituent straight
line segments can sometimes intersect each other. For example, this may occur when a
road crosses over a county border. The MTSM algorithm makes provision for such
occurrences by firstly introducing an additional point into the pyramid at the point of
intersection of the two line segments (this point is given an interpolated elevation
value), and then substituting the two original line segments with four replacement

65

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

segments. This process is illustrated in Figure 5.6.

2

10,

It110

Edge constraint (p1, p2)
cannot be inserted since it
intersects constraint (p3, p4).

Figure 5.6- C

The solution is to firstly
delete constraint (p3, p4) and
insert new point i at
intersection of edge (pl, p2)
and (p3, p4).

'atering for intersecting cons

Finally, insert four edge
constraints, (p1, pi), (pi,
p2), (p3, pi) and (pi, p4).

training edges.

5.4 Justification for Using the Douglas-Peucker Algorithm.
In a number of recent papers [76,77,78,79] the Douglas-Peucker algorithm has been

subjected to criticism with regards its role as a line generalisation algorithm. The main
argument put forward is that the algorithm was originally intended for the purpose of
point reduction, not line simplification, and hence cannot be expected to perform well
in the role of line generalisation algorithm. Its current use in many GIS is therefore
purported to be a misuse. The consensus of opinion, that is in these papers, is that 'the
high performance of Douglas-Peucker 'algorithm in mathematical evaluations (as
described by McMaster) may be interpreted as being indicative of its relative merits as
a weeding algorithm, but not necessarily as evidence of its superiority as a
generalisation algorithm' [76]. Indeed, far from the Douglas-Peucker algorithm being
superior, several of the authors proceed to describe their own algorithms which they
regard as better suited to the task of simplification.

There are two main criticisms of the Douglas-Peucker algorithm. Firstly, it may only be
used successfully when scale changes are small or modest [80,81,45]. The second
criticism is that it may exhibit closing spikes or crossings that give a topologically
distorted view of line morphology [82]. The author of this thesis is aware of these
limitations but has persevered with the algorithm for two main reasons. Firstly, it is
still, despite the criticism, the most widely used, and generally accepted as best,

currently available line simplification algorithm (although this may change in future).
Secondly, the Douglas-Peucker algorithm has the property of retaining original points at
all stages of simplification and is therefore well suited to the multi-scale aspect of this
thesis. In addition, a number of post-simplification routines are available which
attempt to resolve some of the inadequacies of the algorithm. Muller [83] presents a

66

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

method for the removal of spikes; this thesis (Appendix 1) suggests a means by which
spatial integrity can be restored when crossings occur; and several smoothing
algorithms [52,84] have been developed which can extend the range of scale change
over which the Douglas-Peucker algorithm may be successfully used.

5.5 Limitations of the MTSM.
It should be noted that with regard to the multiple scale representation of topographic
data, the MTSM is restricted to the generalisation', and subsequent multi-scale
representation, of line data. This design limitation is deliberate and has been governed
by the author's decision to only consider the generalisation of line data in the thesis.
However, for the model to be described as truly multi-scale it may be argued. that as
more complex automated generalisation functions become available then the MTSM

must be able to accommodate them. For example, the MTSM at present assumes that
an object is present at every level of generalisation, and that it references the same
polygon, line and point features in each case. However, in reality, this is not always the
case. For example, certain objects at source-scale might not be deemed important
enough to be included at all derived scales. Also, an object made up from a number of
polygons at source-scale might be represented by a single polygon at a smaller scale.
Similarly, a polygon will not always appear at every level, and will not always
reference the same line parts at different levels. MTSM also assumes, incorrectly, that
all line features appear at every level (albeit in generalised form).

In order to facilitate these types of generalisation in the future an alternative data

model is suggested. It differs from the MTSM in that it introduces the concept of object
data and polygon data being separated into levels, which may be a subset of the total
number of levels in the database. Each level will only reference those objects or
polygons which are present at that level. Individual object and polygon descriptions

will therefore be allowed to change between levels. The addition and deletion of line
features between levels can be accommodated using the present MTSM design.

It should also be pointed that the MTSM (or any multi-scale approach) is
inappropriate when applying generalisation operations such as exaggeration,
displacement and symbolisation to carry out large scale change. This is because the
derived, smaller scale data is no longer, in a geometric sense, a subset of the large scale
data. At present, a multiple representation approach would appear to be the only
available technique capable of supporting these operations. This does not however rule
out the use of the MTSM for separately representing each of the multiple
representations across a sub-range of scales (see Section 10.3.1).

67

www.manaraa.com

Chapter 5A Multiresolution Topographic Surface Model

5.6 Summary and Conclusions.
This chapter has presented a new data model, or data storage scheme, suited to the

efficient multi-scale storage of terrain and topographic data. It has also described an

algorithm which when applied to suitable source-scale data will create the data model.
The data storage scheme has been based on two previously described multi-scale data

structures, namely, the constrained Delaunay pyramid and the line generalisation tree.

The data model is used as a basis for two multi-scale database implementations,
descriptions and evaluations of which are given in Chapter 6. At this stage it is

possible to make predictions, based on information already known about the data

model on which the databases are based, as to what these evaluations will reveal. For

example, the worst-case time complexity of the triangulation and constraining methods
used in the data model creation algorithm is O(n2). This suggests that the time taken to

create the multi-scale database will increase sharply as the number of points belonging
to the model increases. This, however, is not considered to be a serious issue since the
intended use of the multi-scale database is as a relatively permanent storage scheme,
with database creation being a one-off event. Efficient update of the database is
facilitated by the dynamic nature of the data model, thus avoiding the need to re-create
the database when updates are required. It seems prudent that a thorough evaluation
of the multi-scale databases should involve comparisons with the two alternative
representation methods, namely, multiple representation and generalisation at run-time.
It is expected that the multi-scale database will require less storage than multiple
representation, but at the expense of a slower response time to scale-specific queries.
Conversely, it is expected that the multi-scale database will provide a quicker response
to database queries than a generalisation at run-time approach, but will incur the data

storage overheads inherent in a multi-scale data structure. The extent to which data

storage and query processing efficiency differs between the various representation
methods will be reported in the next chapter.

68

www.manaraa.com

Chapter 6

System Implementations

www.manaraa.com

Chapter 6

6.1 Introduction.

System Implementations

Two prototype database systems, based on the data model and accompanying
algorithm presented in the previous chapter, have been implemented. The first, a
relational implementation, named the Multiresolution Topographic Surface Database
1.0 (MTSD 1.0), is described in Section 6.2. The database system has been tested in

experiments involving test data obtained from the British Geological Survey (BGS), the

results and conclusions of which are included. Section 6.3 concerns itself with an ISAM
implementation of the database system, named MTSD 2.0. This database system has
been tested with the same test data as that used for MTSD 1.0. Database testing for

each of the implementations includes storage-cost and query response-time evaluation.
In each case the evaluation is by means of a comparison between the multi-scale
database method and two alternative representation techniques, namely, multiple
representation and generalisation at run-time. In conclusion, Section 6.4 provides a
chapter summary and a comparison of the two implementations.

6.2 A Prototype Relational Database Implementation - MTSD 1.0.
The MTSM and associated algorithm have been implemented in C on a DEC Vax 8800

machine. Objects, polygons, lines (and corresponding line generalisation trees), points,
the spatial index grids and the constrained. Delaunay pyramid (CDP) are stored as
tables within an ORACLE relational database management system (Figure 6.1). The
database is built using aC program which makes use of the routines contained in each
of five core C libraries. The reason for using the Vax machine for the prototype system
was primarily that of convenience. At the start of the project the University's DEC Vax
8800 was the most suitable machine available, offering considerable processing power,
a number of high resolution workstations and a wide variety of useful library packages
(including GKS and UNIRAS). Having decided to use the Vax, the choice of the
ORACLE database as the main data receptacle appeared sensible as it offered a wide
range of immediately available data storage and access facilities. The incentive

governing the choice of C, as opposed to other available languages (such as Pascal and
ADA), was based on the fact that C offered greater scope for future transportability to
other machines. This was a particularly important factor in that even at an early stage
in the project it was envisaged that all work would eventually be expected to run on a
soon to become available UNIX-based SUN workstation.

With this in mind, it was also necessary that the system be programmed in a modular
fashion, thus ensuring that any future modifications to code, required as a result of
transportation to another machine, could be as localised and restricted as possible.

70

www.manaraa.com

Chapter 6

Line Feature l able,

LEVEL 1 LEVEL 2 LEVEL n

Ime-id line-id line-id
point-ids point-ids point-id.,,
seq_nos seq_nos seq_nos

Triangle Tables

LEVELI LEVEL2 LEVEL ii

tri id tri_id tri_id
tri_type tri_type tri_type
geom_id georn_id geom. id

LEVEL 1

gcum_ id
vertl _id
vert2id
vert3 id
adjacent I id
adjacent2_id
adjacent3_id

Internal Tables

LEVEL 21

geom_id
vertl_id
vert2 id
vert3_id
adjacentl_id
adjacent21d
adjacent3 id

System Implementations

Point Iahle"

(point_id
I elu"i'd
x _value v_ valet
z vale(.

LEVEL n

geom_id
vertl id
vert2_id
vert3 id
adjacent 1

_id
adjacent2id
adjacent: t_ id Intormatioil I. 1111C

object_grid_x
t3uundarv l ahlcýs ohject_grid_y

triangle-grid
_x LEVEL I LEVEL 2 LEVEL n triangle--grid- v

lateral error
4eom_id geom_id gi om_id vertical error
. idjacentl_id adjacentl_id adjacent]

-id adjacent2_id adjacent21d adjacent2_id
adjacent3_ id adjacent3_ id , uljact. nt' ir1

c)hject l able

Iri n}; I e(; rid I al'It
uh)(ct_ id

LEVEL I LEVEL 2 LEVEL n Object dent

. lass irl,
acoor x-coord x_ccxir point Ic1,
v word V_coord v_coord Inne iLI,
triangle iris triangle iris triangle ids polvg iii �1,

Object Grid Tables

LEVEL I LEVEL 2 LEVEL n t'oIvt; on l able

x_coor x_coor x_coorc
v_coord v_coord _coord
object ids object ids object i&,

Figure 6.1 - The relational database implementation (MTSD 1.0).

The result of this was the creation of five core C libraries, namely the Data-Retrieval

library, the Data_Transfer library, the Geometry library, the Triangulation library and
Output library. The benefit of this modularisation becomes immediately apparent in

Section 6.3, and again in Chapter 7 where advantage is taken of the re-usability of the

routines contained within the core libraries. Also, much use is made of the C 'header

file' which allows for global constants and global variables to be held in code separate

71

www.manaraa.com

Chapter 6 System Implementations

from the main program and core libraries. This feature, while not being of vital
importance, again assists in easier transition between system versions.

6.2.1 Database Description.

The points from which the topographic data is made up are combined with the terrain
data points to form a single set of points S. Each point belonging to S, having been

assigned a unique identifier (point_id), is stored in the Point Table. Initially, the
level-used flag for all surface points is assigned a null value while the level_used flag

of line feature points is set to the level of significance assigned to it by the line

generalisation algorithm. The level-used flag of all points is updated depending on

which level in the database the point is first used.

There is a Triangle Table at each level of the database. Each of these tables,

representing a level in the CDP, stores the details of each triangle present at that level.

Each triangle in the database is given an identification number (tri id) when it is

created. It should be noted that if a triangle exists at more than one level (in the form of

a boundary or external triangle in the lower level) it will have the same tri_id at each
level. The tri_type flag is set to 0,1 or 2 depending on whether the triangle is internal,
boundary or external, respectively. The geom_id field is used as a pointer to the
appropriate record in either the Internal or the Boundary Table. The Internal Table
holds the full geometry and adjacency information for internal triangles while the
Boundary Table holds the adjacency information for boundary triangles. The vertices of
boundary triangles are found by obtaining details from a higher level triangle. No
External Table is required since the geometry and adjacency information of external
triangles can be found by retrieving the details of the triangle with the same tri_id as it
in the previous level of the database.

There is also a Line Feature Table at each level of the database. Each Line Feature
Table stores the line generalisation tree details pertaining to its level for each line
feature. In each table an individual line feature (line-id) is described by a list of points
(point_ids) and a corresponding list of sequence numbers (seq_nos). Polygon features

are stored in the Polygon Table. Each polygon feature (polygon id) is described by a
list of line features (line ids) from which it is made up. The Object Table contains the
details of each object in the database. Each object is defined by an object identifier
(object id), an object description (object desc), a list of object class identifiers
(class-ids) and lists of the point (point ids), line (line-ids) and polygon (polygon-ids)

features which make up that object. The object class identifiers are used to assist in

thematic retrievals of information.

The Object Grid Tables and Triangle Grid Tables correspond to the spatial grids
detailed in 5.2.2.1. Each entry in a spatial table consists of the x, y coordinates

72

www.manaraa.com

Chapter 6 System Implementations

(x_coord, y_coord) of the bottom left hand corner of the cell it represents and a list of
objects or triangles (object_ids or tri_ids) which intersect that cell. The number of cells
in the x and y direction of each object grid (object grid_x, object-grid-y) and each
triangle grid (triangle-grid-x, triangle-grid-y) is stored in the Pyramid Table. This table

also stores the lateral error (related to object resolution) and vertical error (related to
terrain resolution) associated with each level.

6.2.2 The Core Libraries.

For reasons of portability and re-usability, the routines required to create MTSD 1.0
have been modularised. Routines have been grouped together in a particular library on
the basis of the type of operation they perform and upon an evaluation. of the
likelihood of them having to be modified if they were to be transferred to a different

machine. Each library will now be described in turn. Details of the main functions

available in each library are given in Appendix 2.

6.2.2.1 Data_Retrieval Library.
This library contains low-level read/write procedures which interact directly with the
database tables and make use of the Embedded SQL facilities available on the Vax.
The procedures enable a variety of operations, such as retrieve the coordinates for a
particular point_id from the Point Table (Figure 6.2), retrieve details for a particular
tri id from the Triangle Table or retrieve the list of object ids contained within a
particular cell of an Object Grid Table. These procedures are specifically designed to
interface with the ORACLE database system used on the University's Vax machine.

void
get_values(point id, level_used, x -value, y _value, z_value)
int point id;
int *level_used;
double *x_value, *y value, *z_value;
{

EXEC SQL
SELECT level used, x _value, y value, z_value
INTO : *level_used, : *xvalue,: *y value,: *z_value
FROM POINT TABLE
WHERE point id = : point_id;
return;
errrpt : handle errorO;

}

Figure 6.2 - The MTSD 1.0 procedure for retrieving the values

associated with a particular point.

6.2.2.2 Data-Transfer Library.

The Data_Transfer library contains higher-level read/write procedures which, instead

of interacting directly with the database, interact with the procedures contained within

73

www.manaraa.com

Chapter 6 System Implementations

the Data_Retrieval library. The procedures within the Data_Transfer library carry out
operations such as returning the geometry of a particular tri id or a list of object ids

contained within a particular polygonal area. The library has been designed in such a
way as to limit its dependency on where and how the data is actually stored.

6.2.2.3 Geometry Library.
Many of the techniques employed in the construction of MTSD 1.0 require geometrical
routines, such as point-in-triangle and line intersection tests. Such routines are used
many times and at many different stages of the construction process, and also seem
likely to be re-used in any future application programs. It therefore seemed logical to
store all such routines in a single library where they could be readily accessed by all
other routines.

6.2.2.4 Triangulation Library.
This library contains a number of the basic functions required to perform a constrained
Delaunay triangulation of a set of points, such as calculating the convex hull, inserting

a point into an existing triangulation and inputting a constraining edge into a
triangulation.

6.2.2.5 Output Library.

The Output library consists of a number of high-level computer graphics output
primitives. The primitives perform operations such as draw an object or display a
triangulation on the screen. In this implementation the routines interact with the
UNIRAS graphics routines available on the Vax.

6.2.3 An Implementation Issue.
When creating the multi-scale database it is important to consider the method used for

storing intermediate data. Two possible extremes exist, the first involving main memory
storage. With this approach, the initial step will be to read all source data into main
memory. The database creation program is now applied to this internal data and an
internal multi-scale model produced. This multi-scale model, and any updated source
data, is then sent to the ORACLE database. The second approach involves the
database creation program acting directly on a continuously updated database. The
first approach has the disadvantage that the maximum amount of data held in the
database is equivalent to the maximum amount of data that can be held in main
memory. The major disadvantage of the second approach is that database creation will
involve a large number of database accesses, thus increasing the time taken to create
the database when compared to the main memory approach (for more detail see [85]).
For the purposes of this thesis, the first approach has been adopted, the reason for

which is two-fold. Firstly, the data used in the system testing is not extensive, and can

74

www.manaraa.com

Chapter 6 System Implementations

be adequately catered for in main memory. Secondly, the Vax and SUN machines used
in developing MTSD 1.0 and MTSD 2.0 (Section 6.3) employ virtual memory
management systems, thus considerably increasing the capacity of main memory
applications.

6.2.4 Database Retrieval and Update.
In order to test the prototype system a number of basic database retrieval operations
have been implemented. The procedures used for these operations are held in the
Data_Transfer library. These operations allow for the retrieval of triangles and
topographic objects at specific levels of detail and for particular areas of interest.
Three parameters are needed to define a query, the first indicating what type of
information is to be retrieved. The information type is described in terms of an integer

code value, with -1 referring to outcrop objects and 0 to triangles. The second query
parameter indicates the level of detail at which the information is required and is
defined by an integer value corresponding to the required level. The third parameter
defines the area of interest over which information is required. This area is defined in
terms of a bounding rectangle which is described by two x, y coordinate pairs, the first

corresponding to the bottom left hand corner of the bounding rectangle, the second to
the top right hand corner. As an example query, consider the retrieval of triangles at
detail level 2, the area of interest being a 500m square region with bottom left hand

corner coordinates (42000,21000). The corresponding MTSD 1.0 query would be (0,2,
42000,21000,42500,21500).

No database update operations are provided by the MTSD 1.0 system. It should be

noted however that the primary data structures on which the database is based (the
CDP, the line generalisation tree and the fixed grid) facilitate update. It therefore
follows that the MTSD 1.0 will lend itself to the future inclusion of update operations.
Note also that the point and edge insertion algorithms used in the creation of the CDP

are themselves dynamic and could readily be adapted to allow for the insertion of new
data.

6.2.5 Testing MTSD 1.0.

The system described has been tested using data acquired from BGS. Two types of
data were involved, namely, geological outcrop map object data (referencing

constituent polygon, line and point data) representing outcrop boundaries and fault
lines, and terrain data in the form of irregular (x, y, z) point data. The test data covers
a 2km x tkm square in the Grantham area of England. Plate 6.1 is a plot of the terrain

points, of which there are 380. The outcrop data is shown in Plate 6.2 and consists of
20 objects, which in turn reference a total of 20 polygons and 143 lines. The lines are
made up from a total of 896 2-D feature points.

75

www.manaraa.com

Chapter 6 System Implementations

Plate 6.1 - Terrain points (380) forming part of test data set.

Plate 6.2 - The outcrop data consistins of 20 objects (20 polt/c tJ? l , 14i lire; sind SL)h

points).

76

www.manaraa.com

Chapter 6 System Implementations

A series of test databases have been created, details of which are given in Figure 6.3. In

each case the lateral and vertical error tolerances have been chosen is such a way as to

emphasise the difference in detail between the database levels. No attempt is made
here at relating these error tolerances to what professional geographers regard as scale,
although some thought is given to this topic in Section 10.3.1. The database creation
time, similar for each of the databases, appears satisfactory (particularly in light of the

argument presented in Section 5.6). Plates 6.3 to 6.8 show the three levels of the CDP
forming part of Database 3. Note that only those object edges which lie completely
within the convex hull of the terrain points are included as constraints (see Section
5.3).

Database
Name

Number
of levels

Vertical
nor(m)

Lateral
Error (m)

Number of
terrain points

Number of
topographic points

Number of
edges

Creation
time (s)

30.0 5.0 168 216 227
1 3 12.5 2.5 48 90 317 304.0

1.0 1.0 148 198 515
35.0 8.5 158 157 161

2 3 10.5 2.5 77 129 317 311.0
1.0 1.0

--
129 198 515

1.1 77(7- 138 L(
3 3 7.5 3.0 105 140 289 350.0

Figure 6.3 - Database creation performance table for MTSD 1.0.

77

www.manaraa.com

Chapter 6 System Implementations

Plate 6.3 - Database 3, level 1 (vertical error = 40.0m, lateral error = 10.0m). Plan

view.

1%

_"'1

Plate 6.4 - Database 3, level 1 (vertical error = 40.0m, lateral error = 10.0m). Shaded,

perspective view.

78

www.manaraa.com

Chapter 6 System Implementations

Plate 6.5- Database 3, level 2 (vertical error = 7.5m, lateral error = 3.0m). Plan view.

Plate 6.6 - Database 3, level 2 (vertical error = 7.5m, lateral error = 3.0m). Shaded,

perspective view.

79

www.manaraa.com

Chapter 6 System Implementations

Plate 6.7 - Database 3, level 3 (vertical error = 0.5m, lateral error = 0.5m). Plan view.

Plate 6.8 - Database 3, level 3 (vertical error = 0.5m, lateral error = 0.5m). Shaded,

perspective view.

80

www.manaraa.com

Chapter 6 System Implementations '

In order to further evaluate the multi-scale database approach a series of tests have
been carried out to compare MTSD 1.0 with two alternative methods, namely,
generalisation at run-time and multiple representation. These tests necessitated the
creation of two test databases. The first, adopting a generalisation at run-time
approach consists of tables in which the source-scale data set (that is, terrain and
outcrop data) is stored. Subsequent scale-specific queries required application of the
Douglas-Peucker algorithm and error-directed constrained triangulation algorithm,
using the supplied lateral and vertical error tolerances. The multiple representation
database approach, as with MTSD 1.0, involved application of these algorithms
during the creation of the database. The multiple representation database differed
from MTSD 1.0 in that at each level, full line and triangle descriptions were stored, as
opposed to the line generalisation tree and CDP approach used in MTSD 1.0.

Method Number
of levels

Vertical
Error (m)

Lateral
Error (m)

Storage used
(K-bytes)

Time taken
to retrieve all
triangles (s)

Time taken
to retrieve all

objects (s)
30.0 5.0 14.0 11.0

MTSD 1.0 3 12.5 428 20.0 14.0
1.0 10 29.0 17.0

Generalisation 30.0 5-0 80.0 28.0
at run-time.

1 12.5 205 101.0 35.0
1.0 1.0 130.0 46.0

Multiple 30.0 5.0 12.0 7.0

re resentation
3 12.5 2.5 601 14.0 9.0 p in

. -LO 1 15.0 1 10-5
35.0 8.5 14.5 9.0

MTSD 1.0 3 10.5 2.5 417 723.0 12.5
1.0 1.0 31.0 21.0

Generalisation 35.0 8.5 31.0
at run-time

1 10.5 2.5 205 36,0
. 1.0 1.0 44.0

lti M le 35.0 8.5 7.5 u p
i 3 10.5 2.5 692 11.0 on representat

40.0 10.0 12.0 7.0
MTSD 1.0 3 7.5 3.0 457 25.0 14.5

0.5 0.5 38.5 17.5
Generalisation 40.0 10.0 89.5 28.0

at run-time
1 7.5 3.0 205 146.5 34.5

. 0.5 0.5 197.0 46.0
Multi le 400 10.0 9.0 11.5 p

t ti
3 7.5 3.0 748 12.0 13.0 a on represen

Figure 6.4 - Results of comparison tests between MTSD 1.0, generalisation at run-
time and multiple representation.

The comparison tests are made in terms of storage efficiency and query-response time.
The results, shown in Figure 6.4, are to some extent compatible with the performance
predictions made in Chapter 5. The response time to scale-specific queries is

significantly slower for the generalisation at run-time approach than the other methods,
which is as expected. The multiple representation method offers better response time
than MTSD 1.0, but not perhaps as much as had been expected. When considering

81

www.manaraa.com

Chapter 6 System Implementations '

storage efficiency, the generalisation at run-time method appears a clear winner, as
predicted, while MTSD 1.0 is considerably more efficient than the multiple
representation approach.

6.3 A Prototype ISAM Database Implementation - MTSD 2.0.
It was decided that a second implementation, to run on a UNIX-based SUN

workstation, was necessary. There were a number of reasons for this decision, the most
important being that the work was being carried out in conjunction with other projects,
at both the University and BGS, which were using UNIX-based workstations. - Other

reasons included the better graphics capabilities offered by the University's SUN

software in the form of PHIGS, an important factor in light of the long term move
towards a 3-D system, and the performance improvements gained in a single-user RISC

environment (as opposed to the multi-user environment encountered on the Vax).

void
get_values(point_id, level used, x _value, y -value, z_value)
int point-id;
int *level_used;
double *x_value, *y_value, *z value;

struct PrimaryPoint_DB single_point;

single_point. vert_id=point_id;
if (btRead(fd_pp, &single_point) != GOOD)

dieO;
*level_used=single_point. level used;
*x value=single_point. x value;
*y_value=single_point. y value;
*z_value=single_point. z_value;
return;

Figure 6.5 - The MTSD 2.0 procedure for retrieving the values associated with a
particular point.

The change from Vax to SUN computer necessitated a change from ORACLE to some
other means of basic data storage, as no ORACLE software was available on the SUN.
Two options were duly considered. The first entailed developing in-house file handling

routines, equivalent to those used in the ORACLE system, using the standard C
input/output functions as the basic building blocks. The second was to make use of a
C ISAM library which was installed on the SUN. The former option had the advantage
that all routines could be written with the particular application in mind. A
disadvantage was that carrying out this task would be time consuming. The ISAM

option had the advantage of having an extensive set of pre-written C file handling
functions, many of which matched directly to an equivalent ORACLE function used in

82

www.manaraa.com

Chapter 6 System Implementations'

MTSD 1.0. In view of this last fact, the ISAM option was preferred.

The ISAM implementation makes full advantage of the modular fashion in which the
first implementation was written. The only libraries which needed extensive

modification were the Data_Retrieval library (ISAM routines instead of embedded
SQL) 'and the Output library (PHIGS replacing UNIRAS). For example, compare the
ISAM coordinate retrieval procedure shown in Figure 6.5 with its ORACLE equivalent
(Figure 6.2). The other libraries were transferred directly from the Vax and after only
very minor alterations compiled and executed successfully.

6.3.1 Database Description.

The database design is almost identical to that of the relational system, with an ISAM

file matching to each of the ORACLE tables. The information contained within each file

is the same as that of its corresponding relational table. One slight difference is in the

way the ISAM files handle the lists of point ids, line-ids, polygon-ids, seq_nos,

object-ids and tri_ids. The relational database takes advantage of ORACLE's ability
to store variable length character strings, with limited data redundancy. This enables
lists of any length (up to an ORACLE defined limit) to be stored in a single record
field. The ISAM library does not provide this facility and therefore an alternative
arrangement was needed. The solution was to employ a chaining mechanism. Here, the
lists are stored in fixed length integer arrays, the length of which (for each file type) has

to be defined before the database is initialised. Any list whose number of entries is less

than the length of its appropriate fixed length is stored in a single array. Lists which

contain a number of entries greater than or equal to the maximum allowed are stored in

a chain of arrays, the first of which is the originally intended array. The second array is

contained in a newly created record, the key of which is stored in the last element of
the first array. The value (and type) of the key will depend on the type of file being

processed. A simple approach is to assign negative values to those keys corresponding
to overflow records. Other records are created and linked together until the whole list

is stored.

6.3.2 Database Retrieval and Update.

The database retrieval operations included in the MTSD 2.0 system are the same as
those included in MTSD 1.0. Queries, defined in terms of three parameters (data type,
level of detail and area of interest) allow triangles and topographic objects to be

retrieved at specific scales and for particular regions of interest. As was the case with
MTSD 1.0, no database update operations are provided.

83

www.manaraa.com

Chapter 6 System Implementations'

6.3.3 Testing MTSD 2.0.

The MTSD 2.0 system has been tested using the same test data as used in the testing

of MTSD 1.0. Three databases have been created, details of which are given in Figure
6.6. The database creation times, which offer an improvement when compared to
MTSD 1.0, are again satisfactory.

Database
Name

Number
of levels

Vertical
rror(m)

Lateral
Error (m)

Number of
terrain points

Number of
topographic points

Number of
edges

Creation
time (s)

30.0 5.0 168 216 227
1 3 12.5 2.5 4 90 317 168.0

1.0 1.0 148 198 515
35.0 8.5 158 157 161

2 3 10.5 2.5 77 129 317 189.0
1.0 1.0 129 198 515

40. 10. 1. 139 1
3 3 7.5 3.0 105 140 289 203.0

Figure 6.6 - Database creation performance table for MTSD 2.0.

Figure 6.7 shows the results of comparison tests made between MTSD 2.0 and the two
alternative representations, generalisation at run-time and multiple representation. The

results are in line with those reported in 6.2.5. MTSD 2.0 performs better than
generalisation at run-time with regard to response time to scale-specific queries, and
requires significantly less storage space than multiple representation. On the other
hand, MTSD 2.0 is slower to respond to queries than the multiple representation
technique, and requires more storage space than generalisation at run-time.

84

www.manaraa.com

Chapter 6 System Implementations

Method Number
of levels

Vertical
Error (m)

Lateral
Error (m)

Storage used
(K-bytes)

Time taken
to retrieve all
triangles (s)

Time taken
to retrieve all

objects (s)

30.0 5.0 8.0 5.0
MTSD 2.0 3 12.5 395 12.0 6.0

1.0 17.0 8.0
Generalisation 30.0 r, n 50.0 12.0

at run-time
1 12.5 7 -C;

183 65.0 15.0
. 1.0 1-0 81.0 19.0

Multi le 30.0 5.0 5.0 4.0 p
t ti

3 12.5 2.5 560 5.5 4.0 represen a on

35.0 8.5 7.5 4.5
MTSD 2.0 3 10.5 2.5 386 13.5 6.5

1.0 1.0 16.0 8.5
Generalisation 35.0 8.5 48.0 14.0

at run-time.
1 10.5 2.5 183 63.0 16.0

1.0 1.0 85.5 19.5
Multiple 35.0 8.5 4.5 4.0

re resentation
3 10.5 2.5 554 5.5 4.5 p

40.0 10.0 7.0 4.0
MTSD 2.0 3 7.5 3.0 421 13.0 7.0

0.5 0.5 18.5 9.0
Generalisation 40.0 10.0 40.0 14.5

at run-time
1 7.5 3.0 183 70.0 17.0

. 0.5 0.5 98.0 21.5
Multiple 40.0 10.0 4.0 5.0

re resentation
3 7.5 3.0 594 5.0 5.5 p

Figure 6.7- Results of comparison tests between MTSD 2.0, generalisation at run-
time and multiple representation.

6.4 Summary and Conclusions.

This chapter has described two database system implementations, MTSD 1.0 and
MTSD 2.0, which succeed in allowing terrain and topographic object data to be

combined in a single database at multiple levels of detail. Points, lines and polygons
are integrated with, and serve to constrain, a hierarchical triangulation (the CDP)

which avoids data duplication. Multi-scale representation of line data is

accommodated by adoption of the line generalisation tree method. Data is accessed
via spatial grid indexes referencing topographic objects and the triangles that model
the terrain surface.

The database implementations have been subjected to several tests involving a test
data set obtained from BGS. In comparison tests with two alternative multiple scale
representation techniques, both MTSD 1.0 and MTSD 2.0 perform in a manner to be

expected of systems based on multi-scale data structures. The multi-scale databases

outperform a generalisation at run-time approach with regards query response-time, at
the expense of increased data storage. Conversely, the multi-scale databases require
less storage than a multiple representation approach, but do not perform as effectively
in response to database queries.

85

www.manaraa.com

Chapter 6 System Implementations'

When comparing MTSD 1.0 and MTSD 2.0 to each other, it becomes evident that the
ISAM implementation (MTSD 2.0) offers better performance (in terms of creation time,
storage requirements and query response time) than its ORACLE counterpart.
However, the author believes that with regards database creation time and query
response time the reason for the difference in performance has little to do with the
relative effectiveness of a relational approach as opposed to an ISAM approach. A

more likely explanation is to consider the performance difference as a by-product of
the different environments in which the two methods have been implemented (that is, a
multi-user Vax-based database as opposed to a single-user SUN-based database). For

example, a series of benchmark tests involving the construction of a number of main-
memory based constrained Delaunay pyramids show the SUN to considerably
outperform the Vax. This would indicate that any differences between ISAM database
implementation and ORACLE database implementation is to some extent influenced
by the difference in the machines on which they were implemented.

It could be argued that query response-times in both implementations are far from

good. For example, a response time of 17 seconds when retrieving all triangles from
level 3 of MTSD 2.0 Database 1 seems slow when taking into account how relatively
small the test data set is. However, it should be noted that the emphasis of this
research has been on the logical design rather than an optimal implementation of the
multi-scale database. This chapter has shown that such a database is feasible and
offers performance benefits when compared to its main alternatives.

86

www.manaraa.com

Chapter 7

The Implicit TIN

www.manaraa.com

Chapter 7

7.1 Introduction.

The Implicit TIN '

This chapter gives details concerning a recently developed surface representation
technique termed the Implicit TIN. Section 7.2 gives explanation as to why the Implicit
TIN was developed, while details of the original implementation are given in Section
7.3. Several of the limitations of the original Implicit TIN are discussed in Section 7.4,

which proceeds to describe a new, improved Implicit TIN scheme. This improved

version is then used as the basis for an implicit multiresolution topographic surface
database (I_MTSD), details of which are presented in Section 7.5. The performance of
I_MTSD is discussed in Section 7.5, which includes comparison tests involving MTSD
2.0. Finally, conclusions and summary are given in Section 7.6

7.2 Motivation for the Implicit TIN.
Data storage schemes based on conventional TIN data structures incur a storage
overhead due to the fact that they represent the topology of the triangulation explicitly.
This is true of the multiresolution data storage scheme presented in Chapters 5 and 6.
Storing topology explicitly results in the fact that although TINs typically use many
fewer points than their main alternative representation, the regular rectangular grid,
they do not usually occupy much less data storage. This is demonstrated by the
following example, taken from Kidner and Jones [86]. Consider a vertex-based TIN,
derived from a regular grid DTM, where 10% of the original grid points are needed to
represent the surface satisfactorily. If it is assumed that each x, y and z coordinate of
every TIN point can be represented in the same storage space as each TIN topologic
pointer value, then it has been shown in Section 2.4.3.2 that an edge-based TIN, made
up from N points, requires a storage space of approximately 10N. This storage cost,
10N, is equivalent to 100% of the original grid storage space, and therefore no storage
saving has been achieved. A. triangle-based TIN will require even greater storage
equivalent to 150% of the original grid storage, that is, a net increase in storage use.

When the amount of data stored is not great this storage overhead does not prove a
problem. However, the ever increasing demand of GIS users is resulting in the need for

accurate terrain data at finer resolutions and at national levels, thus leading to very
large quantities of data. Such vast volumes of data when stored in the conventional
TIN format may exceed the storage limits of many systems.

7.3 The Original Implicit TIN.

The original Implicit TIN [86,87] differs from a conventional TIN in that only vertices
are stored. In other words, in an Implicit TIN the topological relationships defining the
triangulation are not explicitly recorded. TIN topology is reconstructed by a procedure
if and when it is required. Thus a suitable triangulation procedure is required, which
can itself be thought of as part of the Implicit TIN.

88

www.manaraa.com

Chapter 7 The Implicit TIN'

The Implicit TIN provides a highly compact storage scheme for representing surfaces
when compared to a conventional TIN. It is however apparent that this advantage is at
the cost of having to reconstruct TIN topology when required. With this in mind it is
noted that many GIS operations concerning terrain data, such as profiling, visibility
analysis, earthwork calculations and communication network siting, only require
subsets of the complete data coverage. Therefore with regards the Implicit TIN it
follows that for any particular operation, only the topology of points relating to the
operation need be reconstructed.

Kidner and Jones [86] propose a method for spatially specific reconstruction of TIN
topology based on Delaunay triangulation. Elevation points are stored in a box-sort

structure [70], which allows for fast access to required points. When an operation
requires a surface reconstruction for a particular area of interest the grid cells covering
this area can be directly accessed to determine all the vertices of the local TIN. A

conventional Delaunay triangulation algorithm is then applied to these points resulting
in an explicitly defined TIN.

An important characteristic of the Delaunay triangulation is its uniqueness for a given
set of points. When triangulating a subset of the original points however, the
triangulation at the boundary of the subset cannot be guaranteed to be the same as that
obtained in a global triangulation. This is because neighbouring vertices outside the

" region of interest, which may affect the triangulation within the area of interest, are not
taken into account. In an attempt to overcome this problem a provision is made to
allow for a 'reasonable' margin of points around the area of interest by expanding the
search window. This margin should be dependent upon the sparseness of the data
within the terrain model.

7.4 An Improved and Constrained Implicit TIN.
The previously described implementation of the Implicit TIN is deficient in two ways.
Firstly, in certain instances around the border of an area of interest, the derived
triangulation will not conform to the uniqueness property of a Delaunay triangulation.
This will sometimes occur despite the use of an expanded search window. Secondly, it
makes no provision for the inclusion of linear constraints within a triangulation. In

response to these inadequacies a modified version of the original was developed
collaboratively by Jones, Kidner and Ware [881. The modifications were exploited in a
multi-scale database which will be discussed in the Section 7.5. The next section will
serve as an introduction and concern itself with a single-scale Implicit TIN.

7.4.1 Database Design.

The single-scale Implicit TIN consists of an ISAM database, used for storing permanent
data (Figure 7.1), plus the constrained Delaunay triangulation routines required for

89

www.manaraa.com

Chapter 7 The Implicit TIN'

generating temporary data, that is, TIN topology. The ISAM database is made up from
6 files. The Point File stores the x, y and z coordinate for each terrain point, each
accessed via a unique identifier. The Object File stores details of surface constraining
features. These features are defined in terms of their constituent polygons, lines and
points which are stored in the Polygon, Line and Point Files respectively.

Object Quadtree File

Cell identifier.
Cell size.
Object list.

Point Quadtre'e File

Cell identifier.
Cell size.
Point list.

Point File

Point identifier.
X value.
Y value.
7. vilue.

Object File Polygon File Line File

Object identifier. Polygon identifier. Line identifier
Classification number. Line feature list. Point list.
Polygon feature list.
Line feature list.
Point feature list.

Figure 7.1 - Overview of the single-scale database.

Two spatial indexes, the Point Quadtree File and Object Quadtree File, are employed.
Each Point Quadtree cell references all terrain points which intersect it, whereas each
Object Quadtree cell references all objects which intersect it. This simple quadtree
approach is preferred to the regular grid overlay method of Section 5.2.2 for reasons
which will become evident in the Section 7.4.2. Quadtree cells are identified using the
Morton code method. In this implementation, the bottom left hand coordinates of each
cell are bit-interleaved, to form the Morton code. This code, coupled with a record of
the cell size, provides a means for uniquely identifying the location and extent of each
cell. The reason for maintaining separate object and point quadtrees is due to a
distinction between real world objects with name and class attributes and the lower
level point geometry used to describe the objects. Many points will only be used for
describing the ground surface and will not be part of the boundary of objects mapped
onto that surface.

7.4.2 The Implicit TIN Algorithm.
This section presents an algorithm which constructs a constrained Delaunay TIN for a

given query window. The triangulation is obtained in three stages. Initially, the

algorithm uses the query window to generate a list of quadtree addresses (Figure 7.2).

90

www.manaraa.com

Chapter 7

(n)

The Implicit TIN

(b)

Figure 7.2 - Quadtree addresses used to access relevant points and objects. (a) The

query region with respect to the database. (b) The quadtree cells (and data) accessed in the
database.

These are used to access the relevant elevation points and constraining objects via the

Point and Object Quadtrees. It should be noted that all data referenced by these

quadtree cells are retrieved, not just the data that intersect the query window. Data

which lies beyond these quadtree cells will be retrieved if required during triangulation.
The advantage of using the quadtree approach, as opposed to the regular grid overlay

scheme adopted in the MTSD systems, lies in the fact that where data is sparse,

quadtree cells will be large. This means that if the nearest data to the edge of the query

window is in fact distant it may still be in one of the originally generated quadtree cells.
This limits the need to re-access the database during the subsequent triangulation.

(n) (h)

Figure 7.3 - Elevation and edge points stored in box-sort structure. (a) A bounding

rectangle placed around quadtree cells. (b) Box-sort structure with referenced and empty cells.

91

www.manaraa.com

Chapter 7 The Implicit TIN

The object data, consisting of a combination of polygons, lines and points, are reduced
where appropriate to a list of edges. The vertices defining these edges are stored,
together with the elevation points, in a main-memory based box-sort structure (Figure
7.3). This regular grid structure provides spatial indexing in the course of triangulation.

Procedure DELAUNAY TRIANGULATE

/* TNBS - an array used to hold the list of Thiessen neighbours of a point
/* NTN - the number of Thiessen neighbours a point has */

Define query region.
Use region definition to generate the required quadtree addresses for
both object data quadtree and height data quadtree.
Read required data. Store objects as a sequential list of edges, each referencing two
vertices.
Store object vertices and height vertices in the box-sort data structure.
Put all vertices VERTS (NUMBER_OF_VERTICES)
on the TRIANGULATION-STACK.
Initialise the stack pointer (STACK_POINTER = 1).
Do While STACK_POINTER # NUMBER_OF_VERTICES

Let CURRENT_POINT = top point
of TRIANGULATION_STACK(STACK_POINTER).
FIND_THIESSEN_NEIGHBOURS(CURRENT_POINT, TNBS, NTN).
For each pair of Thiessen neighbours (Na, Nb)

If both neighbours are outside of the query region, then
If external edge (Na, Nb) intersects the query region, then

If Na has not already been triangulated, then
NUMBER_OF_VERTICES = NUMBER_OF_VERTICES + 1.
TRIANGULATION_STACK(NUMBER_OF_VERTICES) = Na.

Endif.
If Nb has not already been triangulated, then

NUMBER_OF_VERTICES = NUMBER_OF_VERTICES + 1.
TRIANGULATION_STACK(NUMBER_OF_VERTICES) = Nb.

Endif.
Endif.

Endif.
Endfor.
Add CURRENT_POINT and Thiessen neighbours (TNBS) to the TIN.
STACK_POINTER = STACK POINTER + 1.

Enddo.

Endprocedure.

Figure 7.4 - The procedure to carry out Implicit Delaunay triangulation.

The second stage involves the construction of the Delaunay triangulation of all relevant
vertices, from both elevation data and constraining objects (see Procedure

DELAUNAY TRIANGULATE, Figure 7.4). Points that lie inside the query region will
always belong to the final triangulation, so initially these points are placed on a stack
TRIANGULATION_STACK of points to be triangulated. The Thiessen neighbours of
each point CURRENT_POINT on the stack are then found in the following way (see
Figure 7.5). The nearest neighbour, NNB, of CURRENT_POINT is regarded as the first

92

www.manaraa.com

Chapter 7 The Implicit TIN '

Thiessen neighbour. The next Thiessen neighbour K to the right of the edge
(CURRENT_POINT, NNB), a Delaunay edge, is then found and added to the list of
Thiessen neighbours. The Thiessen neighbour to the right of the edge
(CURRENT_POINT, K), also a Delaunay edge, is then found. The process is repeated
until the latest neighbour K is equal to the original neighbour NNB. The search for
Thiessen neighbours makes use of the box-sort data structure, such that only points
within the vicinity of a Delaunay edge are tested. If the search for a Thiessen neighbour
includes box-sort cells which are empty (that is, lie outside the generated quadtree
region) or extends beyond the box-sort coverage, the required quadtree cells, in the
database intersected by the local search region are accessed and the necessary vertex
information is retrieved (Figure 7.6).

93

www.manaraa.com

Chapter 7 The Implicit TIN '

Procedure FIND_THIESSEN_NEIGHBOURS(CURRENT_POINT, TNBS, NTN)

/* TNBS - an array used to hold the list of Thiessen neighbours of a point
/* NTN - the number of Thiessen neighbours a point has */
/* NNB - the nearest point (neighbour) to the CURRENT_POINT */

Initialise SEARCH_AREA (in terms of box-sort cells).
FOUND = 0.
Do While NOT FOUND

Check SEARCH_AREA for nearest point (NNB) to CURRENT-POINT.
If NNB was found, then

FOUND = 1.
Else

Expand SEARCH_AREA.
If SEARCH_AREA now extends outside the buffer limits, then

Generate quadtree addresses for external region and read data into
appropriate external cell.

Endif.
Endif.

Enddo.
NTN=1.
TNBS[NTN] = NNB.
J= NNB.
FINISHED = 0.
Do While NOT FINISHED

Initialise SEARCH AREA.
FOUND = 0.
Do While NOT FOUND

Check SEARCH-AREA for Thiessen neighbour (K)
of edge (CURRENT_POINT, J).
If K was found, then

. FOUND = 1.
Else

Expand SEARCH AREA.
If SEARCH AREA now extends outside the buffer limits, then

Generate quadtree addresses for external region and read data into
appropriate external cell.

Endif.
Endif.

Enddo.
If K* NNB, then

NTN=NTN+1.
TNBS[NTN] = K.
J=K.

Else
FINISHED = 1.

Endif.
Enddo.

Endprocedure.

Figure 7.5 - The procedure to find the Thiessen neighbours of a point.

94

www.manaraa.com

Chapter 7 The Implicit TIN

When all Thiessen neighbours of CURRENT_POINT have been found, the point is

removed from the stack and added, together with its list of neighbours, to a list of

processed points. This list, when complete, forms a vertex-based TIN. The next point
from the TRIANGULATION STACK now becomes the CURRENT_POINT and its

Thiessen neighbours are found in like fashion. The process is repeated until the
TRIANGULATION_STACK is emptied.

External Region
(Data not always in memory)

(u)

(h)

Query Region
(Data in memory)

External data read
into n enior v

I) it. i alýný. ýýýti in mrmOrv'

Figure 7.6 - Retrieving data from database during triangulation. (a) The search for

vertices extends beyond the query region. (b) The search region is mapped into quadtree
addresses.

95

www.manaraa.com

Chapter 7 The Implicit TIN'

Figure 7.7 - The triangulation of all vertices within a query region. Note that coverage
is not complete in the bottom two corners.

A triangulation of all points lying inside the query region will not guarantee a complete
TIN coverage over that region. There is the possibility of parts of the query window not
being covered, especially in its corners where a Delaunay edge might cross the window
but both its vertices are outside (Figure 7.7). The algorithm caters for such occurrences
by checking for such edges, termed external edges, and when found, adding the vertices
belonging to the edges to the stack of vertices to be triangulated. Thus when the

triangulation is complete, triangles will have been constructed on both sides of all such

edges (Figure 7.8). This process introduces unrequired edges, which can either be

retained or discarded. Such an edge is distinguished from other edges by the fact that

one of its endpoints has no neighbour. Figure 7.9 illustrates the process of dealing with

an external edge.

Figure 7.8 - The final Delaunay triangulation of the query region.

96

www.manaraa.com

Chapter 7

(a) (h) (C)

The Implicit TIN -

Figure 7.9 - Test for complete coverage and resolution of completeness by

triangulation of external vertices. (a) External edge intersection. (b) Triangulation of
external vertices. (c) Removal (f unrequired edges.

The final stage in the triangulation process is to insert the linear constraints of all

objects which lie within or intersect the current TIN (see Procedure
CONSTRAIN_TRIANGULATION, Figure 7.10).

97

www.manaraa.com

Chapter 7 The Implicit TIN'

Procedure CONSTRAIN_TRIANGULATION

For each constraining edge A to B
If edge not already in the TIN, then

Identify all points which have 1 or more links that intersect the edge (A, B),
keeping a record of the distance the point of intersection, of each point, is from
A (for points with more than 1 intersection, it is only necessary to store 1 distance).
Delete each points intersecting links.
Split the points into 2 sets, S1 and S2, each containing points lying either
side of (A, B).
Sort S1 with respect to intersection distance from A.
Sort S2 with respect to intersection distance from B.
Add A to the list of neighbours of B.
Add B to the list of neighbours of A.
TRIANGULATE_POLYGON(A, B, Si).
TRIANGULATE POLYGON(B, A, S2).

Endif.
Endfor.

Endprocedure.

Procedure TRIANGULATE POLYGON(P1, P2, S).

Find all points not in current TIN but which belong to polygon of influence of
(P1, P2), store in V.
Search S and V for the point Q with largest subtended angle to edge (P1, P2).
If Q not already in TIN, then

Add Q to TIN.
Endif.
Add P1 to the list of neighbours of Q.
Add P2 to the list of neighbours of Q.
Add Q to the list of neighbours of P1.
Add Q to the list of neighbours of P2.
If Q is in S, then

If edge (P1, Q) is not an edge in original TIN, then
Create set S3, containing points in S lying between P1 and Q.
TRIANGULATE POLYGON(P1, Q, S3).

Endif.
If edge (P2, Q) is not an edge in original TIN, then

Create set S4, containing points in S lying between Q and P2.
TRIANGULATE_POLYGON(Q, P2, S4).

Endif.
Else

If edge (P1, Q) intersects original TIN, then
TRIANGULATE POL

Endif.
If edge (P2, Q) intersects original TIN, then

TRIANGULATE_POLYGON(Q, P2, S).
Endif.

Endif.

Endprocedure.

Figure 7.10 - The procedure to implicitly constrain a Delaunay triangulation. Also
included is a procedure to Delaunay triangulate a polygon.

98

www.manaraa.com

Chapter 7 The Implicit TIN '

Each constraining edge (pl, p2) can have one of five possible states : (i) pl and p2 are
both vertices within the TIN and form a Delaunay edge; (ii) pl and p2 are both vertices
within the TIN but are not connected; (iii) either pl or p2 is a TIN vertex whilst the
other is external to the TIN; (iv) both pl and p2 are external to the TIN; or (v) any of
the cases (i) - (iv) but where the constraining edge passes through a concavity or a hole
in the triangulation. Cases (i) and (ii) are the most likely, the probabilities of each
depending upon the density at which the elevation and object data are sampled. In the
first instance (i), the segment exists within the TIN and therefore no update is

necessary. In the other cases the segment does not exist and therefore the TIN must be

constrained (Figure 7.11).

i

Figure 7.11 - Constrained edge insertion within a TIN. (a) Identify intersecting edges
(dashed lines). (b) Delete edges. (c) Re-triangulate around constrained edge.

99

www.manaraa.com

Chapter 7 The Implicit TIN'

For a constraining segment (p1, p2) with both vertices within the TIN but not connected,
that is case (ii), the procedure for inserting the edge can be broken down into four

steps. The first consists of determining the current edges which are intersected by the
constraint (Figure 7.11a). Step two proceeds to delete these edges (Figure 7.11b), while
the third step involves re-triangulating around the new edge (Figure 7.11c). Finally, step
four deals with updating the TIN data structure.

3

Pl

p2

3

Pl

P
2

3

Pl

3

Pl

Figure 7.12 - Triangulation within a polygon around a constrained edge. (a) The

polygon, (pj, 1,2,3,4,5,6, p21 p1), to be triangulated. (b) Point 5 subtends largest angle to
base edge. Thus two new polygons formed. (c) - (d) Subsequent sub-polygons treated

recursively.

The problem of re-triangulating around the constraining edge is reduced to that of
separately triangulating the two polygons formed either side of the edge. These

100

www.manaraa.com

Chapter 7 The Implicit TIN'

polygons are sometimes referred to as the polygons of influence [22]. The triangulation

of each polygon proceeds as follows. Consider the edge (pl, p2) to be the base edge of
the polygon. The initial step is to find the vertex Q of the polygon, discounting the

vertices pl and p21 which subtends the largest angle to the base edge. For the upper

polygon in Figure 7.12a this is vertex 5. This vertex is added to the list of neighbours of
both pl and p2, and similarly pl and p2 become neighbours of vertex 5. Two sub-

polygons have now been formed with base edge (p1,5) and (5, p2) respectively (Figure

7.12b). The two sub-polygons, and any subsequent sub-polygons, are dealt with,

recursively, in the same way as the original polygon (Figures 7.12c - 7.12d). The

recursion continues along a particular path until the latest new edge matches an edge in

the original TIN.

For case (iii), where a constraining segment has one vertex in the TIN and the second
outside, the procedure is similar, but the polygon of influence may now include vertices

outside the original TIN. For example, consider the insertion of the highlighted segment
(Pl, p2) in Figure 7.13a. Here, as before, the search for the vertex Q with largest

subtended angle involves examining the vertices making up the polygon of influence
(discounting pl and p2), which in this case includes the external point pi (Figure 7.13b).

The recursive procedure in this case continues along a particular path until either the
latest edge matches an edge in the original TIN or the latest edge fails to intersect the

original TIN (Figure 7.13c).

Pl

P2
P2

pl pi

n

(a) (b) (c)

Pz

Figure 7.13 - Insertion of edge with one external vertex. (a) Vertex p2 external to TIN.

(b) Need to include all external vertices making up the polygon of influence, including

external vertices, in search for Q. (c) Edge has been inserted.

The fourth possible situation, case (iv), is where both vertices of the constraining edge
lie outside the original TIN. The procedure for inserting such an edge follows that of

case (iii) as shown in Figure 7.14.

101

The polygon of influence
contains a point not in the
original TIN.

www.manaraa.com

Chapter 7

p
2

P2

The Implicit TIN'

Figure 7.14 - Insertion of an edge with two external vertices. (a)Triangulation prior to
insertion of constraint. (b) Triangulation after insertion.

In some cases the Implicit TIN algorithm will produce triangulations containing holes,
due to triangles crossing concave regions of a query window. The algorithm has been

designed to handle query windows that are themselves concave in shape or include a
hole. Introducing a constraint which passes through such a hole or concavity is catered
for by using the methods for case (iii) and case (iv), as shown in Figure 7.15.

Pl
p

pi
2

(a) (b)

P2

Figure 7.15 - Insertion of an edge through a hole in the triangulation. (a) Triangulation

before insertion of constraint. (b) Triangulation after insertion of constraint. Notice that a part
of the hole remains un-triangulated since it does not influence the query region.

7.4.3 Triangulating within a Restricted Region.

To construct TIN topology for any query the algorithm in the previous section requires

an initial vertex to start the triangulation process. In most cases an arbitrary vertex
from within the query window is chosen (the vertex which happens to be on the top of
the TRIANGULATION_STACK). However, in certain circumstances, no vertices lie

within the initial query window. This situation may arise if the query window is

102

Pl (b)
Pl

la)

www.manaraa.com

Chapter 7 The Implicit TIN '

narrow, or has no width as in the case of a profile. In such a case the initial vertex can
be found in a number of ways. One method is to find the nearest neighbour of the

centre of gravity of the points defining the query window. Another method is to search
for a straight line segment (constraint) that crosses the query window and to select one
of its bounding vertices. This would have to act as a preliminary method in that it will
of course only work if there is an intersecting constraint. When an initial vertex is
found, the algorithm proceeds to find its Thiessen neighbours. Each connecting edge
(initial vertex to Thiessen neighbour) is then tested for intersection with the query
window. If intersection does occur the neighbour is placed on the
TRIANGULATION_STACK. If one or more intersections are found the remaining TIN

can be constructed as in Procedure DELAUNAY_TRIANGULATE. If no intersecting

edge is found another 'initial' vertex in the vicinity must be selected and the procedure
repeated. The case where the query region is completely contained within a Delaunay
triangle, that is, there are no intersecting edges, must also be catered for. This is

achieved by finding the Thiessen neighbours of the vertex closest to the query region.
One of the triangles thus formed must contain the query region.

7.4.4 Implicit TIN Flexibility.
It should be noted that storage saving is not the only advantage gained by using the
Implicit TIN. The method also provides adaptability in allowing for selection of
specific features for integration into a triangulation. Thus constraints on the terrain
model are not predetermined, as they would be in an explicitly defined TIN.

The line features to be included in the database can be grouped into two categories.
Firstly, there are those which can be described as structural. Such features, when
included as constraints in a terrain model, will improve the accuracy of the model in
describing the form of the terrain. Lines that describe phenomena such as ridges,
valleys and breaks of slope fall into the category. Also included are any lines that
describe physical objects, such as roads, rivers and the outlines of buildings. The

second category of line features are those which are non-structural. These lines are
distinguished by the fact that they do not add to the accuracy of the surface
representation, but are used as constraints merely to facilitate visual display of the
surface. A typical non-structural line could, for example, represent an administrative
boundary (which may in some circumstances coincide with structural lines).

The significance of distinguishing between line features in this way is that it offers a
measure of flexibility when producing a topographic surface. When structural lines are
initially added to the database, their vertices are added to the terrain data and the
lines labelled as necessary constraints. This will ensure that such lines will always be
included as constraints when TIN topology is constructed. In contrast to this, non-
structural lines can be labelled as not always necessary constraints, and as such are

103

www.manaraa.com

Chapter 7 The Implicit TIN'

only included in a TIN when a particular query requires their presence.

7.5 The Implicit TIN in a Multiresolution Environment.

The Implicit TIN algorithm from the previous section has been adapted to form part of

an experimental multi-scale database (I_MTSD), details of which are given by Jones,

Kidner and Ware [88]. This database can be regarded as the implicit equivalent to the

MTSD 2.0 described in Chapter 6.

7.5.1 Database Design and Construction.

The database is partitioned into n levels, each representing the topographic surface at a
different resolution. The top level (level 0) represents the coarsest resolution and the

bottom level (level n-1) the finest resolution. The database is initially constructed in a

way similar to the construction of the conventional MTSD. Points forming part of a
topographic feature are assigned a level of significance using the Douglas-Peucker

algorithm, while the terrain points are assigned their level of significance as a result of

applying De Floriani's point insertion algorithm. The implicit version differs from the

conventional in that when pyramid construction is complete (that is, all points have

been assigned a level of significance), all TIN topology is discarded. This topology is re-

constructed, where and when required, by applying the Implicit TIN algorithm. Figure
7.16 illustrates the main components of the database and will now be explained.

The Information File stores the lateral error (related to object resolution) and the

vertical error (related to terrain resolution) associated with each level and a record of
the number of levels in the database. The Point Files, with one file at each database

level, store a point identifier and x, y and z coordinate for each vertex. The Point File

at a particular level will only record information pertaining to points whose level of

significance matches to that level. Also, vertices that define non-structural line features

are assigned a null z-value. When such vertices are included in a TIN construction their

z coordinates are interpolated from the terrain elevation data.

104

www.manaraa.com

Chapter 7 The Implicit TIN

mollo-

Triangle File 1

triangle identifier
class ids
vertex I identifier

vertex 2 identifier

vertex 3 identifer

Figure 7.16 - Overview of the multi-scale database (1_MTSD).

The Object File contains a record for every object in the database. It is assumed that
each object is present at every level, and has the same constituent parts at every level.

An object record consists of an object identifier, an object description, an integer value
which acts as a 'real world' classification code and lists of references to its component
polygon, line and point features. Note that Point objects refer directly to the Point File

where the coordinates are stored. The Polygon Feature File stores the description of
each polygon feature present in the database. Each polygon is described by its polygon
identifier and a list of the identifiers of the line features from which it is made up. The

Line Feature Files, with one file per database level, stores for each line feature its
identifier and the list of point identifier /sequence number pairs which make up the line.

Each file only stores the identifiers/ sequence numbers of vertices which are introduced

at its level. Therefore, to construct a line feature at a given level, it is necessary to

access all Line Feature Files from the highest level of occurrence down to the given level.

There are two quadtree files, a Point Quadtree File and an Object Quadtree File, at

each level of the database. Each Point Quadtree File is used to provide spatial access

to all points relevant to its particular level. Each Object Quadtree File provides spatial

105

www.manaraa.com

Chapter 7 The Implicit TIN '

access to all objects present in the database.

Explicit triangulations, formed as a result of triangulating the Implicit TIN, are stored
temporarily in the Triangle File. This file records for each triangle its identifier, the point
identifiers of its constituent vertices and attribute identifiers associated with the
triangle. Attribute identifiers are obtained by the triangle taking on the classification

attributes of any object of which it is a part.

7.5.2 A Geological Application.
The Implicit TIN algorithm described in section 7.4.2 has been implemented in C on a
SUN workstation. It forms part of an experimental ISAM version of the multi-scale
Implicit TIN database described in section 7.5.1. Figure 7.17 shows the output
produced when the database was applied to a test data set, using an L shaped query
region. The test data consists of a terrain surface, made up from 612 points, and a set
of geological outcrop features. These features, which act as constraining objects, are
comprised of 13 geological outcrop regions and 7 geological faults. The outcrop regions
are made up from 20 polygons, while there are a total of 143 line features used to
define these polygons and the fault lines. The constraining features are described by a
total of 967 points. Point Quadtree cells and Object Quadtree cells have a maximum of
5 points and 5 objects, respectively, per cell.

Two database levels are shown to demonstrate the differing amount of detail at each
level. The first level (Figure 7.17a) was created with vertical and horizontal error
tolerances of 10 metres. This resulted in 45 points being retrieved for the given query
window, 14 for the terrain elevation and 31 for the linear constraints. The second,
more detailed level (Figure 7.17c) was created with vertical and horizontal error
tolerances of 5 metres, resulting in a total of 77 points (21 terrain and 56 linear

constraints) being retrieved. For each level, a complete triangulation of the
corresponding part of the database is also shown (created using the conventional
constrained Delaunay triangulation algorithm of De Florian and Puppo [22]). The less
detailed section (Figure 7.17b) contains 587 points, while the more detailed section
(Figure 7.17d) contains 891 points. Inspection of the triangles shown on Figure 7.17

confirms that the Implicit TIN produces the same topology as that of the conventional
TIN.

106

www.manaraa.com

Chapter 7

(a)

(c)

The Implicit TIN

(d)

Figure 7.17 - Output from I MTSD. (a) and (c) The triangulation produced by the
Implicit TIN algorithm when applied to two levels of the test database. (b) and (d) The

triangulations produced using a conventional constrained Delaunay triangulation algorithm.

107

www.manaraa.com

Chapter 7

7.6 Performance of the I_MTSD.

The Implicit TIN '

The major advantage that an Implicit TIN system holds over a conventional, explicitly
defined TIN system is the saving in storage space made as a result of not recording TIN

topology. Indeed, in a comparison of different methods for storing digital elevation
data Kidner [87] has been shown that the Implicit TIN is the most space efficient.
When a single scale Implicit TIN database, of the type described in section 7.4.1, is

compared to an equivalent explicit TIN database using triangle adjacency pointers,
there is an approximate storage saving of

12N-6B-12

where there are a total of N points, B of which are boundary points. The explicit

scheme incurs an additional storage cost proportional to 3N to represent coordinates
of the points. This additional cost becomes 4N if it is assumed that a unique identifier
is also stored for each point. It is also necessary to consider the storage requirements
for the geometric definitions of objects. If the object definitions are stored as lists of
point identifiers, the approximate upper limit on the storage required approximates to
1N. Therefore, the storage required by an explicit TIN, in addition to triangulation
topology pointers, is estimated to be 5N. This estimate can be regarded as a measure of
the total storage cost for*the implicit scheme as other than constraints, there is no
triangulation topology. The number of points defining the boundary is usually much less
than N and thus triangulation topology storage approximates to 12N. Therefore the

relative size of the implicit and explicit TIN schemes is in the ratio 5/17.

If the Implicit TIN is considered in the context of a multi-scale database, as has been
described in section 7.5.1, it follows that its approximate storage saving when
compared to its explicit equivalent (see Chapters 5 and 6) is equal to

m
E12N1-6B; -12.
1-o

Here there are (m+1) levels in the database and a total of Ni points in the triangulation

at level i, B; of which are boundary points. Using the same argument as described in the
previous paragraph, the storage saving made when comparing any level in the implicit

system to its equivalent in the explicit system is in the ratio 5/17. It follows that as the

number of levels increase, the overheads for explicit scheme increase significantly. For

example, consider a database with five levels, each of which involves a reduction in the

number of points by two-thirds. In this case, the overhead would amount to about 50%

of that of the most detailed level, that is, in proportion to 6N. Therefore the overall
ratio of storage between implicit and explicit databases would be 5/23.

The usefulness of the Implicit TIN will depend, for many applications, on the ability to

reconstruct the correct constrained Delaunay triangulation for a given query region

108

www.manaraa.com

Chapter 7 The Implicit TIN

within a satisfactory length of time. The maximum time allowed to perform this task

will relate to the specific needs of the application. The major time penalty introduced
by the Implicit TIN system is that of having to reconstruct the constrained Delaunay
triangulation from the main memory data. The reconstruction algorithm currently used
has a worst case time complexity of O(N2), where N is the number of points to be

triangulated. This represents an upper bound on time for any incremental Delaunay

triangulation algorithm (constrained or unconstrained), although some parallel
algorithms improve on this, with 0(logN) reported by El Gindy [89).

A series of tests have been carried out which show the I_MTSD achieves satisfactory
results with regards triangulation reconstruction time. For example, the response time
for producing the triangulation shown in Figure 7.17c was approximately 21 seconds. It
is believed that response times are as yet far from optimal and an improved
implementation, based on the same logical design, is possible. For example, the
introduction of parallel processing methods to triangulation can be expected to
improve performance in the future [89,90]. Figures 7.18 and 7.19 give the results of
comparison tests made between I_MTSD and MTSD 2.0. These* results indicate a
storage saving of about 75% when employing the implicit approach. The resulting
increase in query response time is seen to depend greatly on the size of the query region.
For example, I_MTSD queries involving the full spatial extent of the database incur an
increase in response time of approximately 30% when compared to the equivalent
MTSD 2.0 query (Figure 7.18). In the case of the L-shaped query region the percentage
response time increase when using the I MTSD is not as great, ranging between 0% and
about 20% (Figure 7.19).

Method Number
of levels

Vertical
Error (m)

Lateral
Error (m)

Storage used
(K-bytes)

Time taken
retrieve ttria

ngles angles
all

t (s)
30.0 50 8.0

MTSD 2.0 3 12.5 1) r, Inc 12.0
1.0 17.0

30.0 5.0 11.5
Implicit TIN 3 12.5 2.5 104 16.0

Figure 7.18 - Results of comparison tests between I_MTSD and MTSD 2.0. Here,

queries involve the full spatial extent of the database.

109

www.manaraa.com

Chapter 7 The Implicit TIN'

Method Number
of levels

Vertical
Error (m)

Lateral
Error (m)

Storage used
(K-bytes)

Time taken to retrieve all
triangles intersecting

L-shaped query window (s)

30.0 5.0 6.0
MTSD 2.0 3 12.5 2.5 395 10.5

1.0 1.0 16.0
30. 5.0 6.5

Implicit TIN 3 12.5 1 2.5 104 10.5

Figure 7.19 - Results of comparison tests between I MTSD and MTSD 2.0. Here,

queries involve an L-shaped region.

7.7 Summary and Conclusions.
This chapter has introduced a new, and improved, version of the Implicit TIN data

storage scheme. The most important aspect of this work has been the development of a

novel constrained Delaunay triangulation algorithm, specifically designed for use in an
Implicit TIN environment. The Implicit TIN has been shown to be a data storage scheme
that can be used as a space efficient means of representing topographic surfaces in a

multi-scale environment. The major benefits of the implicit approach are its storage

efficiency and the flexibility it gives in allowing for the selection of specific line features,

and the omission of others, for inclusion as constraints upon the model. Execution of
the TIN reconstruction algorithm inevitably introduces a time overhead. Whether this

overhead is acceptable will depend on the specific application.

110

www.manaraa.com

Chapter 8

A Multi-Scale Geological Model

www.manaraa.com

Chapter 8

8.1 Introduction.

A Multi-Scale Geological Model '

This chapter gives details of a new data model suited to the efficient multi-scale
representation of 3-D geological data. This model can be regarded as a natural

progression of the MTSM described in Chapter 5. Section 8.2 provides a brief

introduction to 3-D GIS, often referred to as Geoscientific Information Systems (GSIS).

In particular, it outlines the 3-D GIS project currently being carried out by the British
Geological Survey (BGS), and gives a review of the general requirements of a GSIS. The

spatial representation of 3-D data is discussed in Section 8.3. The subject is looked at
firstly from an object representation point of view, with attention being given to the
boundary representation and octree methods. Various techniques for providing efficient
spatial access to collections of 3-D objects are then reviewed. Section 8.4, building on
the design of the MTSM, describes a multi-scale 3-D data model. The model, which
represents both the ground surface and geological subsurface horizons, is based on a

series of constrained Delaunay pyramids. A conclusion and summary is given in
Section 8.5.

8.2 An Introduction to Geoscientific Information Systems.
Recent years have seen the accumulation of large quantities of geological and
geophysical information. This information comes in the form of raw data, such as well
logs, seismic surveys, and gravity and magnetic studies, and interpreted data, such as
contours, cross sections, grids of horizons and outcrop maps [91,92,93]. Large

geological institutions, such as BGS, are currently converting this information into
digital form. The availability of such digital data has created the possibility for the
development of a 3-D GIS. Central to this system is a 3-D geological model, based on
the interpretation of various data sources. It is hoped that the equivalent of currently

existing published maps will in future be 'derived as projections of the model' [94].

8.2.1 The BGS Project.

In 1990 BGS commenced a research programme under the title 'Three-dimensional
Integrated Geoscience Mapping'. The main objective of the programme was 'to develop

the concept of a unified, 3-D representation, or map, of the geology based on surface
mapping and borehole information, and constrained by joint modelling of multiple

geophysical datasets' [95]. The 3-D geological map would be designed by a geologist
on a graphics workstation, starting from a digital terrain model, field data and

available borehole information. Traditional maps, cross sections and 3-D views (from

various angles) could then be produced as an output of the 3-D map. From the outset

of the project it was realised that often there is no direct geological data available. In

such instances, geophysical methods, such as seismic reflections and potential field

surveys, provide the only evidence of subsurface structure. However, a problem exists
in that each geophysical technique pertains to a particular physical property (for

112

www.manaraa.com

Chapter 8A Multi-Scale Geological Model '

example, density or velocity), and when compared will often yield contradictory
models of subsurface geology. With this in mind, the BGS project is also concerned with
the design of software which will enable users to correlate and interpret all available
data sets in terms of a single, unified 3-D model.

8.2.2 Basic Requirements of a GSIS.
The basic functions of a GSIS (see [96,97]) are little different from those in a 2-D GIS,

even though there is greater complexity involved in the design and implementation of
the 3-D system. For example, such a system has to provide a process for creating a 3-D

model from available data; have the ability to efficiently store and access the
information contained within the model; include means by which stored information

can be updated; provide functions for performing analysis of the model; and include

procedures for displaying the model and results of analysis (Figure 8.1).

MODEL
CREATION
PROCESS

Geological/Geophysical
3-D

GEOLOGICAL Oa- UPDATE
Data

k,,.

" MODEL

DISPLAY

ANALYSIS

Figure 8.1 - The basic components of a 3-D GIS.

Of these five basic requirements, this thesis is primarily concerned with the first two,
that is, model creation and model storage. Model update has been given some thought
in Section 9.3, but not to any great extent. Also, it is felt that the development of new
techniques for the display and analysis of the 3-D model provides scope for

considerable research effort in itself (see, for example, various papers in [92]).
However, 'the usefulness of the model will come from the ease with which it can be

developed, modified and analysed' [93]. Therefore, since the 3-D model with which
this work is concerned must eventually form part of an overall system, the implication

is that for the purpose of update, display and analysis, any such model will have to be

dynamic, provide efficient access to information and allow for high levels of detail to
be included when describing objects.

An additional requirement of the data model being detailed in this chapter will be to
113

www.manaraa.com

Chapter 8 A Multi-Scale Geological Model '

allow for the creation, storage, display and analysis of data at different levels of
detail. This capability is 'clearly desirable, both for the purpose of mapping at a range

of scales and for search and overlay procedures' [91].

For the purposes of this section, it is important to consider two fundamental

differences that exist between a conventional GIS and its geological equivalent, a GSIS.

The first difference lies in the dimensionality of the data being stored. GIS are primarily
two-dimensional and are interested in the main with x and y coordinates. When the

third dimension is involved it is usually only included as an attribute of the 2-D data.

Consequently, the databases, data structures, analysis functions and display/output

facilities provided by GIS are suited only to 2-D data. For example, even a GIS facility

which at first glance may appear to offer three-dimensional capabilities, such as a
Delaunay TIN model, is primarily concerned with the x and y coordinates of a point,
and can only deal with surfaces which are single-valued with respect to the xy-plane.
Conversely, a GSIS needs to cater for three-dimensional data. The world of the

geologist is a 3-D world, where the z coordinate is as important as either the x or y

coordinate, and as such the geologist's data is 3-D. Therefore, the databases, data

structures, model creation and analysis operations and display/output facilities

provided by a GSIS need to be able to deal with 3-D data.

A second difference lies in the fact that when dealing with subsurface geological data,
it is very often the case that only incomplete, and sometimes conflicting, information is

available [97,98]. This situation is mainly due to the difficulties, and associated high
financial costs, in collecting subsurface information. The problem of limited subsurface
data is compounded by the extremely complex nature of certain subsurface structures.
This incomplete subsurface (and hence not visible) data can be contrasted with the
highly visible, and hence relatively easy to sample, nature of 2-D geographic data.

As has been stated, geological information is made available from a number of sources.
In order to create the best model it may be argued that a sensible approach to model
creation is to consider all available data during the creation process. Dabek et al [99]

add weight to this argument by recognising that 'the correlation and joint 3-D modelling

of all available datasets is necessary to achieve the best possible interpretation of
geological structure in any area'. This thinking appears to be the motivation behind the

approach adopted by Unger et al [100] when a model of a portion of the Earth's crust
is formed by bringing together information from six different data sets, namely, surface

outcrop maps, migrated seismic reflection profiles, seismic refraction data, gravity
models and magnetic models.

8.3 The Spatial Modelling of 3-D Objects.
Before proceeding, it is necessary at this stage to formally define the types of object

114

www.manaraa.com

Chapter 8A Multi-Scale Geological Model'

which are to be facilitated by the 3-D data model. It seems reasonable to assume that
to be of greatest advantage to potential users (that is, geologists), the GSIS must be able
to include any object type that is of interest to the user. Rhind [97] divides these

objects into two categories, namely, those which are designed and those which are

revealed. Designed objects include objects such as toxic waste disposal sites, quarries
and buildings. In these cases the shape of the object is the product of workmanship
based upon an original, man-made design. In contrast, revealed objects include all
objects which have not been designed, their shape therefore having to be deduced from

secondary evidence. Raper [92] has divided this group of object into two sub-groups.
The first consists of all objects which can be regarded as sampling-limited. Discrete

spatial entities, such as a perched aquifer, which may be progressively better defined
by increased sampling, are included in this sub-group. The second sub-group consists
of objects which can be regarded as definition-limited, that is, those which are
identified by specification of particular threshold values of aspatial attributes. For

example, the shape of an object defining a stratigraphic unit, as defined by the
frequency of a particular micro-fossil, will change as the frequency threshold changes.

8.3.1 Modelling 3-D Objects.
Requicha [101] in a review of solid modelling techniques identifies six schemes which
produce unambiguous definitions of solid objects. They are primitive instancing,
constructive solid geometry, sweep representations, spatial occupancy enumeration,
cell decomposition and boundary representations. Of these, only the latter three
appear to be relevant to geological modelling [91]. Raper [92] gives an overview of the
two approaches to a 'full 3-D spatial structuring of geo-objects'. These can be regarded
as the 3-D equivalents of tessellated (raster) and vector structures. The tessellation

solutions mentioned are the simple voxel models [102], the octree [96] and the polytree
[103]. Vector data structure schemes included are those which use topological relations
to define 3-D boundary representations for indexing geometric data (see 'simplicial

complexes' of Carlson [104], 'structured vector fields' of Burns [105]); the 3-D
definition of iso-surfaces by the 3-D interpolation between points (see IVM system
[106]); and the spatial clustering of vectors defining the geological objects by a
geometrical attribute in a geoscience database (see "Geokernal" [107]). Jones [91]

presents a review of the conventional digital methods of representing geological
structures. They are regular grids, surface patches, triangulations and block models.
Also included in Jones [91] is detail of two other, at the time more novel, approaches,
namely the octree and polytree. Two methods, suggested by several authors in the
literature [91,96,108], seem to be of particular interest. They are the octree, an

adaption of the spatial occupancy enumeration and cell decomposition methods, and
boundary representations, where a solid is defined by the geometry of its bounding

surface.

115

www.manaraa.com

Chapter 8

8.3.1.1 Boundary Representations.

A Multi-Scale Geological Model

A boundary representation represents a solid by dividing its boundary into a finite

number of faces or patches. Each face is explicitly defined by its bounding edges which
in turn are defined by their vertices. Free-form surfaces can be modelled by using spline
functions to fit patches through the vertices of each polygonal face [101,91,961. A

boundary representation example is given in Figure 8.2.

This scheme is widely used in computer graphics due to its ability to cater for effective
visualisation of complex objects (shading, hidden line and surface removal, light source
simulation). Boundary representations can represent objects of any shape, but the

validity of these objects is difficult to verify. With geological applications in mind,
another problem presented is the difficulty in searching a given region in 3-D space. The
technique is suitable for computing volumetric properties but Boolean operations are
complex (quadratic complexity compared to linear complexity of the octree 11091).
However, the exact geometry of the model does provide for accurate analysis. A TIN

can be regarded as an example of a boundary representation scheme and seems a
convenient technique for representing subsurface boundaries at multiple scale.

V1

7v3

v2
Face Nodes

(6)

Edge Nodes
(9)

Vertex Nodes
(5)

Object
Boundary

f1 f2 f3
.....

/,
w, -K

Combinational
Structure

el e2 e3 e4

V1 v2 0
.......

111

(x lylz l) (...) (...) Metric Intormation

Figure 8.2 -A boundary representation for a rectangular pyramid. (From Requiclia
1101]).

116

www.manaraa.com

Chapter 8

8.3.1.2 The Octree.

A Multi-Scale Geological Model

The octree data structure can be regarded as the 3-D equivalent of the quadtree. It is
built by the recursive subdivision of the object space (a cubic volume) into eight equally

sized sub-cubes, or octants. Subdivision stops when a criterion of uniformity is met
(Figure 8.3). The octree is stored explicitly as a tree data structure (Figure 8.4) where

every non-terminal node, or GREY cell (except for those of minimal size), will have a
pointer to each of its eight child nodes. An object can be reconstructed by traversing the

tree and assembling all terminal nodes in the process.

Octrees have several distinct advantages over other solid modelling techniques (see
[103], [91], [96]). Firstly, they can represent any arbitrarily shaped objects (convex,

concave, interior holes) to the precision of the smallest cell. Secondly, Boolean

operations are less complex than those for boundary representations. A third

advantage is that geometrical properties, such as surface area, volume, centre of mass
and interference can be calculated at different levels of precision. Also, they provide
the basis for spatial sorting operations thus increasing search efficiency, they ensure
that space is uniquely defined which is desirable since space cannot be occupied by

two or more objects, and they can be used to represent the interior of non-homogeneous
solids.

Figure 8.3 - The object-space recursively subdivided into octants to form an octree.

7

Figure 8.4 - The explicit tree corresponding to Figure 8.3.

117

012345670123456701234567

www.manaraa.com

Chapter 8 A Multi-Scale Geological Model '

However, octrees do incur some disadvantages (again see [103], [91], [96]). Firstly, the
boundary surface of the object being modelled is represented by a set of square facets
between empty and full cells. Therefore octrees provide only an approximation of the
original surface, the accuracy of which is dependent on the maximum number of cells
that can be stored. A second disadvantage is due to the storage of eight pointers for

every non-terminal node which introduces considerable storage overheads.

The linear octree [110] is a data structure which represents all the basic properties of a
regular octree, but with considerable savings in space. It achieves this by only storing
terminal nodes, also referred to as leaf nodes. Each leaf node is assigned an unique
storage address which is directly related to the nodes position in the octree. The

address for each leaf node is generated using numbering systems known as tesseral
addresses [37]. Bak and Mill [96], Gargantini [111], Jones [91] and Abel and Smith [72]
give examples of such systems.

The regular and linear octrees described thus far are deficient in the fact that they
represent only an approximation of the original object. However, there is no reason why
nodes in such structures cannot store precise definitions of vertices, edges and faces.
Similar assertions regarding quadtrees resulted in structures such as the PM trees of
Samet and Webber [34]. The polytree [103] and the exact octree [109,112], adaptions
of the normal octree types, store exact representations of the object being modelled.

8.3.2 3-D Spatial Indexing Techniques.

As is the case with 2-D GIS, a GSIS must be expected to provide spatially specific
access to data which may be areally extensive. For example, it may be that in the future

an establishment such as BGS will possess a single, seamless 3-D geological database
covering the whole of the UK. It is reasonable to assume that certain queries delivered
to this database will only require a small, and spatially specific, portion of the
information held by the database. Therefore, it will be necessary to provide spatial
indexing of some sort on the 3-D database. Thus individual geological objects, which
have been defined using methods of the sort described in the Section 8.3.1, will be

retrieved on the basis of their location in xyz-space. This section will deal briefly with
four possible spatial indexing techniques, each of which can be regarded as being the 3-
D equivalent of a corresponding 2-D scheme previously described (see Chapter 3).

8.3.2.1 A Fixed 3-D Grid.

This method can be thought of as the 3-D equivalent of the fixed grid (Section 3.3.1)

and is based on the idea of dividing xyz-space into equal-sized cubes. Thus a spatially
extensive volume of data is divided into smaller, equal-sized sub-regions. One possible
way of implementing this scheme would be for each cube to maintain a reference to
each object which intersected that cube. A second possibility would be for each cell to

118

www.manaraa.com

Chapter 8 A Multi-Scale Geological Model

correspond to an area of storage (or memory) in which the intersecting objects are
themselves stored.

8.3.2.2 The Octree.

The octree data structure has already been described in the context of its usefulness as

a means of storing individual solid objects. For the purposes of a large GSIS database,

a further application of the octree would be to use it purely as a spatial indexing

scheme, with each octant keeping a record of any object which intersected it. Thus a
'universal' octree would provide fast spatially specific access to geological objects.
Note that these objects could themselves be defined using the octree approach
described in Section 8.3.1.2. This scheme can be regarded as the 3-D equivalent of the

quadtree scheme described in Section 7.4.1.

8.3.2.3 The R-tree.

The description of the R-tree given in Chapter 3 restricted itself to a 2-D
implementation. However, it should be noted that the R-tree is in fact a k-dimensional

spatial indexing scheme and can therefore be used to index 3-D data. In this case each
leaf node contains one or more record entries of the form

(J, object id)

such that J is the smallest 3-D rectangle that spatially contains the data object pointed
to by the identifier object--id. Non-leaf nodes contain entries of the form

U, child iah

where child id points to a node in the next lower level of the R-tree and J is the
bounding 3-D rectangle of all-objects pointed to by the lower node entries. Initialising

and accessing the 3-D implementation of an R-tree is analogous to that of a 2-D
implementation, and as such will not be discussed here.

8.3.2.4 The Grid File.
As was the case with the R-tree, the grid file was originally designed as a k-
dimensional spatial access data structure. Therefore, with regards a 3-D application,
the grid file can be described as being based on the principle of dividing space into 3-D

rectangles, which are not necessarily equal sized. The Grid Directory again consists of
two parts, the first a dynamic 3-D (not 2-D) array containing one entry per 3-D grid
block. The second part of the Grid Directory now consists of three (not two) linear

scales, which define the size of 3-D cell in the x, y and z directions. Thus 3-D spatial

searches are supported as a result of an initial search of the linear scales.

119

www.manaraa.com

Chapter 8

8.4 A Multi-Scale 3-D Model.

A Multi-Scale Geological Model '

It is the intention here to develop the 2-D MTSM design into a 3-D multi-scale data

model. This is seen as a natural development, since the MTSD appears to have certain
characteristics which lend themselves to the modelling of 3-D geological structures. For

example, the constrained Delaunay pyramid (CDP) seems to be a technique well suited
to the multi-scale representation of subsurface horizons.

8.4.1 A Review of the 2-D Data Model

The MTSM provides efficient multi-scale storage of, and access to, what is essentially
2-D information. This information comprises of ground surface data and topographic

object data (made up from polygons, lines and points) representing features which lie

on the ground surface. These data are combined and processed to form a multi-scale
data model. Efficient access to this model is provided by introducing spatial access
data structures (in the form of fixed grids) to each level of the model. During model
construction, levels of scale significance are assigned to individual data entities by

applying a suitable generalisation algorithm (that is, either the Douglas-Peucker

algorithm or De Floriani's error-directed point insertion algorithm).

8.4.2 Extending the 2-D Design into 3-D.
When designing the data structure for the multi-scale 3-D data model it is essential to
have a clear understanding of what is being modelled. An ideal data model should be

capable of including both revealed (sample-limited and definition-limited) and
designed objects. Revealed sample-limited objects and designed objects are similar in

that they are each, at all times, defined by a definite, discernible boundary. Definition-
limited objects differ in that they can be regarded as being secondary objects, in which

a definite boundary only comes into existence as a result of a particular query (and the

processes resulting from the query) being applied to what can be regarded, in this
instance, as primary data. It therefore follows that for the purposes of data model
design, geological objects fall into one of two categories, which shall be termed hard-

object and soft-object. Hard-objects correspond to revealed sample-limited and
designed objects, and can be best catered for using a boundary representation

approach. A soft-object can be thought of as a collection of related information from

which definition-limited objects are derived. Soft-objects, in which data is

characterised by the gradual variation of a particular property, can be represented
using the octree method.

With the shift from 2-D to 3-D it is inevitable that more complex modelling routines

will be required. This is due, in the most part, to the greater complexity involved when
dealing with 3-D data, particularly of the geological kind. A particular problem is the
difficulty in modelling multi-valued surfaces. Several solutions to the multi-valued

120

www.manaraa.com

Chapter 8A Multi-Scale Geological Model

surface problem have been proposed [113,114,115]. However, these solutions are
limited in that they either require dense data sampling or the provision of an initial,

albeit coarse, input of surface topology. A further cause of greater complexity is the
disparate nature of the many sources of geological information. Therefore the model

must provide means by which all data sources can be integrated and processed to

produce a correct interpretation of the geology it is seeking to represent.

The means by which geological information is generalised, and subsequently

represented, also needs to be addressed. Generalisation of geological information can
be divided into two categories, which will be termed micro-generalisation and macro-

generalisation. Micro-generalisation concerns itself with individual objects and how

they may be represented at various levels of generalisation. This could include, for

example, the generalisation of a hard-object, defined using a boundary representation
made up from triangles, by applying an adaption of the surface generalisation
technique adopted by the MTSD systems. A second aspect of geological generalisation
concerns itself with how collections of objects relate to each other at various scales.
This type of generalisation, referred to here as macro-generalisation, is the process by

which individual objects are themselves eliminated from a particular level of

generalisation, or undergo some special type of merging with surrounding objects. Such

generalisation is usually associated with a specifically adopted geological convention.
For example, a series of horizons representing a sandstone formation at source-scale
may be replaced by a single horizon at a smaller scale representation. Rules governing
such behaviour are usually specific to particular geological agencies, and even within
individual agencies conventions may differ from model to model (data site to data

site). It is necessary to include in the multi-scale model provision for both micro and
macro generalisation.

Spatial indexing can be provided by applying one of the methods described in Section

8.3.2. It is suggested that in keeping with the design of the MTSM that either the 3-D
fixed grid or octree method be adopted. A comparison of the relative advantages and
disadvantages of these two approaches would suggest that the octree method would
offer the better overall performance. It is also necessary to decide on which information

is to be spatially referenced. It is perhaps obvious that individual objects need to be

indexed in this way, but less obvious perhaps is the way in which 'object parts' might
benefit from such indexing. For example, an object representing a subsurface horizon

might be made up from a collection of triangulation patches, which in turn are made up
from a number of triangles. In this instance it may prove beneficial to spatially index

surface patches, in addition to just objects, as it could be that the subsurface horizon

itself is spatially extensive. Therefore it seems that a 3-D model in which individual

objects may themselves be spatially extensive would benefit from an additional object

part spatial index. A query would now firstly involve identifying all relevant objects,

121

www.manaraa.com

Chapter 8A Multi-Scale Geological Model '

then secondly, retrieving only relevant parts of these objects. Spatial indexing would

also need to be separated into levels, as in the MTSM, since it is quite possible that

different objects and object parts will be present at different levels.

8.4.3 A Prototype Multi-Scale 3-D Model.
A prototype multi-scale 3-D geological data model (MGM) is now presented,
implementation details of which are given in Chapter 9. The prototype model,
illustrated in Figure 8.5, provides efficient multi-scale storage of, and access to, the

ground surface and subsurface horizons. Before the model is discussed in detail, it is

first of all necessary to discuss the type of data that is to be modelled.

8.4.3.1 A Description of Data to be Modelled.

Three types of data have been made available from BGS, namely, ground surface data,

outcrop object data and borehole (well) log data. The ground surface data is in the
form of a list of irregularly distributed 3-D coordinates. The outcrop data consists of a
list of outcrop objects, a list of polygon features, a list of line features and a list of

point features. Each object is made up from a list of constituent parts, an object type
identifier, an object description and a unique object identifier. Outcrop objects are of
two types, that is, either region or fault. Region outcrop objects consist of a list of
constituent polygon identifiers, fault outcrop objects consist of a list of constituent line

identifiers. Polygon features are made up from a polygon identifier and a list of
constituent line identifiers. A line feature consists of an unique identifier, a list of its

constituent points and two integer values indicating which two region outcrop objects
lie to its left and right. Each point feature is made up from an x and y coordinate, plus
a unique identifier. The borehole data is made up from a number of borehole records.
Each borehole record is made up of a header record, which stores the x, y and z
location of the borehole at the ground surface, and a series of subsurface horizon depth

measurements. Also included is a file containing a record of the order in which the

subsurface horizons appear in the geological column. Specific subsurface horizons
found in the data include the Lincolnshire Limestone (LLL) Formation, the Grantham

(GRF) Formation and the Northamptonshire Sands (NS) Formation. In this thesis, when
a particular horizon is referred to the convention adopted is that the horizon represents
the base of the formation. For example, the LLL horizon refers to the base of the
Lincolnshire Limestone Formation.

122

www.manaraa.com

Chapter 8

LEVEL i

OUTCROP
OBJECT DATA

GROUND SURFACE
POINTS

Point description
Point description

SUBSURFACEI
POINTS

Point description
Point description

OUTCROP
POLYGON DATA

o ygon description
Polygon description

OUTCROP
LINE DATA

Line description
Line description

A Multi-Scale Geological Model

OUTCROP
POINT DATA
Point description
Point description

GROUND SURFACE
CDP

Triangle description
Triangle description

SUBSURFACE 2
POINT'S

Point description
Point description

SUBSURFACE]
CDP PATCI Im

Triangle description
Triangle description

SUBSURFACE I
CDP PATCH l

Triangle description
Triangle description

SUBSURFACE]
PATCH m QUADTRE

Cell I description
Cell 2 description

SUBSURFACEI
PATCH 1 QUADTREE

Cell 1 description
Cell 2 description

SUBSURFACF. n
PC)I NTS

Point description
Point description

SUBSURFAC1: 2
CD[' PATC I1

T-riangle description
Triangle description

SUBSURFACE 2
CDP PATC11 I

Triangle description
Triangle descrintinn

OBJECT
QUADTREE

Cell I description
Cell 2 description

SUß5URFACI:
C[DP PATCI I

Triangle description
Triangle description

SUBSURFACF, n
CDP PATCI I1

rian} ec escription
Triangle description

SUBSURFACE2
PATCH p QUADTREE
Cell I description
Cell 2 description

SUBSURFACE 2
PATCH 1 QUADTREE
Cell 1 description
Cell 2 description

SUBSURFACE n
PATCH r QUA1)TRI: F
Cell I description
Cell 2 description

SUBSURFACE: n
PATCH 1 QUAI)TREE

Cell 1 description
Cell 2 description

Figure 8.5 -A single level in the multi-scale geological model.

8.4.3.2 Model Description.

The prototype data model is capable of representing the ground surface and subsurface
horizons at multiple scales. The model is divided into levels, each corresponding to a
different resolution. Each level in the model will include details of the point data

GROUND SURFACE
QUADTREE

Cell I description
Cell 2 description

123

www.manaraa.com

Chapter 8A Multi-Scale Geological Model

(ground surface, subsurface and outcrop object) which becomes relevant at that level, a
series of triangulations, each corresponding to a particular surface (that it, the ground
surface or a subsurface horizon), the outcrop objects relating to the level and
constituent polygon and line features. In the case of line features these are stored in a
line generalisation tree format. Subsurface triangulations are made up from one or more
triangulation patches. This particular structure is included in order to facilitate the
data segmentation model construction method (Section 9.5.1.1), which is based on the
concept of a multi-valued triangulated surface being made up from a number of single-
valued triangulated patches. The structure of each ground surface triangulation and
each set of subsurface triangulation patches follows closely to the triangulation design
implemented in the 2-D system, where data duplication is minimised by introducing
internal, boundary and external triangle types. Any known geological feature, such as
an outcrop region or the intersection of a fault, is included in the model by embedding
the isolated points, lines or polygons which represent that feature within the
appropriate triangulation. Note that the prototype implementation, to be discussed in
Chapter 9, only deals with single-valued surfaces. As such a triangulated surface is

only ever made up from a single patch.

It is pointed out that the MGM differs from the full multi-scale 3-D model design
specification (outlined in Section 8.4.3) in two main areas. Firstly, the prototype model
only deals with hard-objects, that is, designed objects or revealed sample-limited
objects. These hard-objects are themselves restricted to surface triangulation objects
and outcrop objects (consisting of collections of polygon, line and point features). No
attempt is made to cater for soft-objects. These limitations do not severely effect this
work's contribution to the BGS project since all data sets made available to this project
can be adequately catered for using hard-objects of the types described. The second
difference between a full model design and the MGM is that a less complicated 2-D
spatial indexing approach is adopted, in the form of a series of quadtrees. At each
level of the model there is a ground surface triangle quadtree for referencing triangles in
the ground surface triangulation, an outcrop object quadtree referencing outcrop
objects and a triangle-referencing quadtree for each of the subsurface triangulation
patches. In order to process a 3-D spatial query, the query must be broken down into a
number of 2-D queries. This method appears adequate for use with the BGS data.

8.4.4 Model Creation.
Having described the prototype multi-scale 3-D model, it is now possible to give
details as to how the model can be created. It should be noted that the methods
described here assume that all surfaces are single-valued with regard to the xy-plane.
The creation process is firstly described, for the sake of simplicity, in the context of a
single-scale environment. A method for applying this process to the creation of a multi-
scale model is then described. There are three main stages in the single-scale model

124

www.manaraa.com

Chapter 8 A Multi-Scale Geological Model '

creation process. These are the triangulation of the ground surface data, triangulation

of the subsurface horizon data and the inclusion of fault data.

8.4.4.1 Ground Surface Triangulation.

The first stage in the model creation process is the production of a ground surface

triangulation. The surface is defined by the set of irregularly distributed terrain data

and the collection of geological outcrop objects (outcrop regions and faults), which act

as constraints upon the surface. The surface triangulation is created by applying a

constrained Delaunay triangulation algorithm to the data. Initially, all terrain points

and points forming part of geological outcrop objects are grouped together and
Delaunay triangulated. This is followed by the process of inserting the line features,

from which the geological outcrop objects are made, into the triangulation as a series of

constraining line segments.

8.4.4.2 Triangulation of the Subsurface.
The second stage of model creation is that of subsurface triangulation. Before

describing this process it is necessary to clarify what subsurface information is

available. The data being modelled in the MGM includes two sources of subsurface
information. The first, and perhaps most obvious source, is that obtained from the
borehole logs. Each log consists of a header record, which stores the x, y and z location

of the borehole at the ground surface, and a series of subsurface horizon depth

measurements. These measurements record the vertical depth of each subsurface
horizon relative to the ground surface. By combining the depth measurements with the

ground surface level (recorded in the header record) it is possible to produce a series of
3-D points, each of which lies on a particular subsurface horizon. For the purposes of
triangulation it is necessary to collate individual borehole information (that is, each 3-D

point) on the basis of on which subsurface horizon it lies. This is achieved by

collectively processing the borehole logs in such a way as to group together, in a single
file, all 3-D points which relate to a particular horizon. Therefore each subsurface
horizon will have associated with it a subsurface elevation file which contains a

collection of irregularly distributed 3-D coordinates which describe that horizon.

125

www.manaraa.com

Chapter 8

23

14

(a)

Outcrop Map

Line 2

A Multi-Scale Geological Model

GRF

LLL
LLL

i
13

GRF

2

Cross Section

3

(b)

Line 1

Figure 8.6 - Assigning outcrop boundaries to their correct subsurface horizon. (a) Line

1 assigned to Lincolnshire Limestone Formation, line 2 to Grantham Formation. (b) Line 1 is
identified as a fault.

A second source of subsurface horizon information is provided by the geological

outcrop boundaries. Each line feature from which a boundary is made-up may possibly
be associated with a particular subsurface in the sense that it describes a series of'

points at which that subsurface outcrops at the ground surface. Hence the points
defining the line can be regarded as forming part of the subsurface in question. Pairing

an outcrop boundary to its correct subsurface is achieved as follows. Each line feature
has associated with it two pointers, indicating the outcrop objects lying adjacent to it

(that is, to its left and right). By examining these pointers and associated objects it is

possible to derive the subsurface to which the line feature belongs. For example, if the

two regions adjacent to the line feature are of different types, say LLL and GRF, then

the line is assigned to the subsurface which appears higher in the geological sequence, in

this case the LLL subsurface (Figure 8.6a). Note that a record of the geological sequence
associated with the data set being modelled forms part of the source data set.
Alternatively, if the line feature in question points to adjacent regions of the same type,
LLL and LLL for example, then the explanation is that the line feature represents a
fault, or part of a fault, and therefore is not assigned to a subsurface horizon (Figure

8.6b). The inclusion of faults within the model is dealt with at a later stage.

It is now possible to proceed with the triangulation of a particular subsurface horizon.

The process, follows very closely to that of triangulating the ground surface data, but

with an additional, final stage. Initially all points from the subsurface elevation file of

the horizon to be triangulated are grouped together with the points defining the line

features assigned to that subsurface. A Delaunay triangulation algorithm is then

126

www.manaraa.com

Chapter 8A Multi-Scale Geological Model'

applied to these points. Next, the line features are added into the triangulation as a
series of constraints, producing a constrained Delaunay triangulation. It should be

noted that these edges will each have a matching edge in the ground surface
triangulation. The Delaunay triangulation algorithm assumes that the surface being

triangulated is a 2-D plenum, that is, there are no internal holes or gaps within the
triangulation. This is always the case when considering the ground surface, but not

when considering a subsurface horizon. Therefore, it is sometimes the case that

unwanted triangles are produced (Figure 8.7). The final stage is to delete these

unwanted triangles from the triangulation. The unwanted triangles occur in areas where
in reality the subsurface does not exist.

GRF

(a)

Unwanted triangles

GRF

(b)

Figure 8.7 - Unwanted triangles created during triangulation of the subsurface. (a) A

cross section of the correct geology. (b) The corresponding model cross-section where the LLL
horizon has unwanted triangles.

In order to delete the unwanted triangles it is first of all necessary to identify them.
When dealing with single-valued surfaces, as is the case here, this can be achieved in

one of two ways. The first involves comparing each subsurface triangle with the ground
surface triangulation. If a subsurface triangle is found to lie above the ground surface
then a contradiction to what can be regarded as possible reality has occurred (that it,

the subsurface cannot lie above the ground surface). Therefore, such a triangle can be

marked as unwanted. The second method, which can only be applied when the

subsurface is known to be single-valued, adopts the approach of comparing each

127

www.manaraa.com

Chapter 8 A Multi-Scale Geological Model

subsurface triangle with the geological outcrop regions obtained from the outcrop map.
If the triangle lies in an outcrop region which is lower in the geological sequence than the

subsurface the triangle belongs to, then it follows that the subsurface in question is not
present at that location, and hence the triangle can be marked as unwanted (Figure

8.7). This second approach is the one adopted in the implementation described in
Chapter 9. When all triangles have been processed, and marked accordingly, all those

which are unwanted can be deleted from the triangulation. The process of subsurface
triangulation is repeated for each of the horizons that are to be included in the model.

A further possibility for the prototype model, although not implemented in Chapter 9,

is the formation of enclosed volumes by joining adjacent surfaces along common
borders. Surfaces with no common border can be catered for by introducing dummy

surfaces to connect upper and lower boundaries. This can be achieved using methods
such as the shortest span technique of Christiansen and Sederberg (1161. Complex

geological objects could also be represented as collections of relationships between

constituent volumes and surfaces.

8.4.4.3 Including Faults in the Model.
Fault lines, obtained from the outcrop map, are already present as constraining objects

within the ground surface triangulation. In order to provide a true representation of
subsurface horizons it is also necessary, where appropriate, to include projections of
these fault lines in the subsurface triangulations. The situation is that a fault has been

identified, and recorded, on the ground surface. This fiult may be assumed to affect

certain of the subsurface horizons, the way in which it does depending on its depth,

angle of dip and throw (Figure 8.8).

I)epth

Figure 8.8 - The dip, throw and depth of a fault.

128

www.manaraa.com

Chapter 8A Multi-Scale Geological Model '

Consider a single fault line Fg in the ground surface triangulation Tg, and how it may

affect a single subsurface horizon T5. Fg is defined by a series of m 3-D points (g1, g21....,

&). The first stage in the fault modelling process is to ascertain if the fault does

actually affect the subsurface horizon in question.

Ground
Surface

Subsur,

(a) (b)

Figure 8.9 - Projecting a fault onto a subsurface. (a) The ground surface fault is projected
along path parallel to its angle of dip, generating points on subsurface. (b) The new points

and fault line are added to subsurface triangulation.

This is achieved by comparing the estimated depth df of the fault with the depth d,, of
the horizon. If di >= dh then the fault can be regarded as being present in T8. The

second step, when necessary, is to generate a subsurface fault line Fs, consisting of m
points (sl, s2,....., sm) which lies on T8. This is achieved by projecting each point gi of Fg

along a path parallel to the angle of dip of Fg, recording the point s; where the path of

projection intersects Ts, thus forming the fault line Fa (Figure 8.9).

Also, when dealing with a subsurface fault line, it is necessary to consider the throw of
the fault. This structure can be modelled by the generation of a second, additional fault

line Ft consisting of points (t1, t2 t,,,). Here it follows that the first and last points, tl

and tm, are equal to sl and sm, respectively. The intervening points, (t2, t31...., t.
-I) can

be generated by offsetting, by an appropriate amount, the coordinates of each of the

corresponding points (s2, s3,...., sm-1) in the direction of fault dip (Figure 8.10). The size

of each point's offset will be in relation to that point's distance from the centre of the
fault line.

129

www.manaraa.com

Chapter 8

(a)

(b)

A Multi-Scale Geological Model'

Figure 8.10 - Modelling the throw of a fault. (a) Triangulation before throw is inserted.
(b) Triangulation after throw is inserted.

For this technique to be of use, the assumption is made that the depth, angle of dip and
throw information pertaining to each fault is known. In the case of the BGS Grantham
data these values have been estimated (following consultation with BGS geologists).
However in some cases, particularly when it is the computer doing the modelling in the
first instance (as opposed to a geologist using a computer to model his/her model),
such information will not be available. Chapter 10 includes details of recent research
which may be of help in automatically generating fault information data.

When all subsurface horizons have had the appropriate fault lines inserted, it is

possible to further enhance the model by generating fault surfaces. This is achieved by

triangulating between corresponding fault lines in adjacent surfaces, thus forming a set
of complete fault representations, in the form of fault surface triangulations. This

process has not yet been implemented in the system described in the next chapter.

8.4.4.4 Creating the Multi-Scale Model.

Each of the previously described 3-D model creation stages can be adapted to cater for

the creation of a multi-scale 3-D model. The process of creating the model follows

closely to that of building the MTSM, as described in Section 5.3. Consider a set of

points Sg describing the ground surface, a set of objects 0 (and constituent polygon,
line and point features) which act as constraints on the ground surface, and a series of

sets of points, SB,, Ss2....., Ss,, each describing a particular subsurface horizon. Now

consider the steps involved in creating ak level multi-scale 3-D model from this data.

130

www.manaraa.com

Chapter 8A Multi-Scale Geological Model'

Each level i has two error tolerances, Evi and EL, associated with it, relating to vertical
error and lateral error respectively.

The first stage is to simplify the outcrop objects 0 into k levels of generalisation. The

generalisation is achieved, as in the MTSM, by applying the Douglas-Peucker algorithm,
with error tolerances of Ell, E121.... Elk at progressive levels, to each of the line features

which make up the individual outcrop objects. Data duplication is minimised by

storing each of the resulting generalised line features in a line generalisation tree. The

next stage is to construct a k-level CDP, referred to here as CDPg, from the points Sg

and generalised objects O. This is achieved by applying the adapted CDP algorithm,
described in Section 5.3, with a combination of the error tolerances Ev; and E. governing
which points are included at a particular level i. CDPg will serve as the multi-scale
representation of the ground surface. The third stage in the creation of the 3-D multi-
scale model is to create a series of CDPs, CDP,,, CDPs2,...., CDPs,,, corresponding to
each of the n subsurface horizons. For a particular subsurface i, this involves, firstly,
identifying which of the outcrop objects Oj of 0 are associated with that subsurface.
This is achieved as described in Section 8.5.3.2. The adapted CDP algorithm is then
applied to Si and O;, thus creating CDPS;. Note that if a particular horizon was made
up from more than one triangulation patch there would have to be a CDP for each
patch. In its application to subsurfaces, a minor alteration in how the CDP algorithm is

applied is in the insistence that when objects are included in a subsurface pyramid,
CDP51, then the level at which their constituent points appear in the pyramid is

governed by the level at which each point appears in CDPg. This ensures that there is
consistency between constraining edges within CDP, and CDPB;. Unwanted triangles
are deleted as described in Section 8.5.3.2. The final stage in the creation of the multi-
scale 3-D model is the extrapolation of ground surface fault lines into the subsurface.
This is achieved by applying the method described in 8.5.3.3 to each of the model's
generalisation levels.

8.5 Summary and Conclusions.

This chapter has been concerned with the design of a multi-scale 3-D data model
suited to geological applications. It has given a brief introduction to the subject of GSIS,

particularly in the context of the 3-D Integrated Geoscience Mapping project currently
being carried out by BGS. A review of the conventional methods used for representing
and spatially referencing 3-D objects have been described, with the conclusion being
that the boundary representation and octree techniques are well suited to representing
geological structures. The main body of work in this chapter is contained in Section 8.4,

which concerns itself with extending the MTSM (Chapter 5) into 3-D. Section 8.4.2

provides description of a proposed 'ideal' multi-scale 3-D geological data model,
which includes two new geological data types, namely, hard-objects and soft-objects.
Section 8.4.3 describes in detail a prototype multi-scale 3-D geological model (MGM)

131

www.manaraa.com

Chapter 8 A Multi-Scale Geological Model '

and associated model construction algorithms. The MGM provides multi-scale storage
of, and access to, the ground surface and subsurface horizons. This model, and
associated construction algorithms, are believed to offer a novel, and very useful,
means by which subsurface geology can be represented. The MGM has been used as the
basis for a prototype multi-scale GSIS, details of which are given in Chapter 9.

132

www.manaraa.com

Chapter 9

A Multi-Scale Geological
Database

www.manaraa.com

Chapter 9

9.1 Introduction.

A Multi-Scale Geological Database '

Chapter 8 included a description of a prototype data model (MGM) suited to the
efficient multi-scale storage of 3-D geological data. The methods required to construct
this model from source data were also discussed. The current chapter provides details

of an ISAM database implementation of the MGM. Section 9.2 gives a description of
the database and outlines the stages involved during database creation. Database

retrieval and update is discussed in Section 9.3, the type and format of queries
supported by the prototype system being explained. Details of system testing, with
accompanying results, are then reported in Section 9.4. Section 9.5 devotes itself to a
discussion of some of the limitations of the prototype database system, with special
attention given to its inability to cope with multi-valued surfaces. Several methods are
proposed as to how this particular limitation can be removed. Finally, Section 9.6

provides a chapter summary and conclusion.

9.2 Database Description and Creation.

A prototype database system, termed the multiresolution geological database (MGD),

which is based on the MGM design, has been implemented in c on a SUN workstation.
Advantage is taken of the reusability of many of the routines used in the MTSD

systems. Data storage is again provided by use of the ISAM file handling library. Note

that the MGD is limited to working with surfaces which are single-valued with regards
to the xy-plane. There are two reasons for this restriction, the first being the fact that
dealing with single-valued surfaces is much simpler than dealing with multi-valued
surfaces. While the author admits that this reason was the primary factor for opting for

a single-valued approach, a second reason was also taken into consideration. This

concerned the fact that the subsurface data obtained from BGS was known beforehand

to represent single-valued surfaces (this information was obtained from BGS). If this
fact was not known, it might well have been the case that more effort would have been
directed towards finding solutions to the creation of a multi-valued surface model. As
it is, some thought has been given to this problem, a report of which is given in Section
9.5.1. An overview of the ISAM database architecture is given in Figure 9.1.

9.2.1 Primary Files.

The first stage in the database creation process is to load the BGS data (that is, the

ground surface data, outcrop data and subsurface data), currently stored in flat (one
data item per line), sequential (that is, not indexed) files, into the ISAM Primary Files
(Figure 9.2). The ground surface data file, which consists of a list of 3-D coordinates, is
loaded into the Primary Ground Surface Points File. When doing so each point is

assigned an unique identifier (point_id).

134

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database'

OUTCROP
OBJECT

object-id
object-type
object_desc
polygon_ids
line.

-ids
point_ids

OUTCROP
POLYGON

FILE

polygon id
line-ids

DESCRIPTION

num_of levels
lateral errors
vertical errors
geological_seq

LINE
ADJACENCY

FILE

line-id
object left
object right

II LEVEL 3"; w
POINTS FILES

LEVEL 2: POINTS FILES

LEVEL 1

Sy
s

ýý

EXTRAPOLATED SUBSURFACE n PATCH 1 SURFACE CDP

OUTCROP LINES I TRIANGLE INTERNAL BOUNDARY
FILE

line-id
point ids GROUND SURFACE CDP

1_id
seq_nos TRIANGLE

FILE

tri_id
tri_type
geom_id

FILE
BOUNDARY _id

FILE id

geom_id
adjacentl id
adjacent2_id
adjacent3_id r: ,s ;w

geom_id
vertl id
vert2 id
vert3 id
adjacentl id
adjacent2_id
adjacent3_id

QUADTREE FILES

GROUND OUTCROP SUBSURFACE 1 SUBSURFACE
SURFACE OBJECTS PATCH I PATCH 1

cell-id cell id cell id cell_id
cell size cell size cell_size cell size
tri_ids object ids tri_ids tri_ids

Figure 9.1 - The multiresolution geological database (3 levels).

135

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database'

PRIMARY FILES

GROUND DATABASE
SURFACE DESCRIPTION
POINTS

OUTCROP OUTCROP OUTCROP OUTCROP
OBJECTS POLYGONS LINES POINTS

SUBSURFACE SUBSURFACE SUBSURFACE
12n

POINTS POINTS POINTS

Figure 9.2 - The Primary Files.

The original BGS outcrop data is contained in four files, namely the object file, the

polygon feature file, the line feature file and the point feature file. The object file

consists of a series of object definitions. Each object definition is made up of an unique
identifier, an object description (a character string), an object type identifier (region or
fault) and a list of references to its constituent parts, details of which are held in either
the polygon feature file, line feature file or point feature file. Each part reference is

made up of two integer values, the first indicating what type of part is being referenced
(that is, polygon, line or point) and the second giving the unique identifier of that part.
The object data is loaded into the Primary Outcrop Objects File, each object reference
of which consists of an object identifier (object id), an object type identifier

(object-type), an object description (object desc) and lists of the polygon
(polygon_ids), line (line-ids) and point (point ids) features which make up that object.
The polygon feature file is made up of a list of polygon definitions, each of which
consists of an unique polygon identifier and references to the component line features

(definitions of which are currently held in the line feature file). The polygon data is
loaded into the Primary Outcrop Polygons File, each record of which stores a polygon
identifier (polygon_id) and the list of line features (line_ids) from which the polygon is

made up. In a similar fashion, the line feature file contains a series of line definitions,

each made up of an unique line identifier and a list of references to constituent points.
Each line definition also records the object identifiers of the two adjacent outcrop

region objects. The line definitions are loaded into the Primary Outcrop Lines File, each
line being defined by a line identifier (line_id), a list of component points (point_ids)

and its adjacent outcrop region references (object-left and object right). The point

136

www.manaraa.com

Chapter 9A Multi-Scale Geological Database'

feature file contains a list of 2-D points, each of which has an associated unique point
identifier. This information is loaded into the Primary Outcrop Points File, each point
being assigned a NULL z value during the process. It is noted that the lists stored in

these ISAM files (polygon_ids, line_ids, point ids) employ the chaining mechanism as
described in Section 6.3.1.

Each of the n subsurface horizons to be represented in the model has a subsurface

elevation file associated with it (see Section 8.5.3.2), the format of which is the same as

that of the ground surface data file (that is, a list of 3-D coordinates). The data from

each of these files is loaded into a corresponding Primary Subsurface Points File.

During this process each point is assigned an unique point identifier (point_id).

During database construction, and its subsequent usage, it will often be necessary to

retrieve information about a particular point, that is its coordinate values, given its

unique identifier (point id). However, at this stage there is no way of knowing in which

primary file this information is held, that is to say, the point could be stored in the

Primary Ground Surface Points File, the Primary Outcrop Points File or any one of the

Primary Subsurface Points Files. Retrieval of information using this set-up will be prone

to inefficiency due to the possible involvement of primary files which do not contain
the required information. In order to overcome this problem, certain constraints are

placed on the unique identifiers assigned to the points of a particular primary file. The

method adopted is to insist that all points held in a particular primary file are given
identifiers which lie within a given range, this range not being allowed to overlap with
the ranges of other primary files. As an example, it might be decided that all points
held in the Primary Ground Surface Points File are assigned identifiers in the range 1-

1000, those in the Primary Outcrop Points File in the range 1001 - 2000, those stored in

the Primary Subsurface 1 Points File 2001 - 2200, and so on. In this way it is possible
to directly deduce the primary file in which the details pertaining to a particular

point id are stored.

It is also necessary at this stage to provide information for the Primary Database

Description File. This file contains information concerning the number of levels of

generalisation to be created (num_of levels), and the lateral error (lateral-error) and

vertical_error (vertical error) associated with each of these levels. This file also stores

the order in which subsurface horizons appear in the geological sequence.

9.2.2 Quadtree Initialisation.

The second stage of the database creation process is to initialise the quadtree files.

Spatial indexing is provided on outcrop objects, ground surface triangles and the

triangles of each subsurface triangulation patch. The spatial indexing is also separated
into levels of generalisation. Therefore at each level of the database there is a Ground

137

www.manaraa.com

Chapter 9 A. Multi-Scale Geological Database '

Surface Quadtree File, an Outcrop Object Quadtree File, and a Subsurface Quadtree
File for each subsurface triangulation patch (1 patch per subsurface). In each of the

quadtree files a record consists of a cell identifier (cell id), the size of the cell
(cell-size) and a list of references to data items which intersect the cell. In the case of a
Surface Quadtree these references will be to triangles (tri_ids), whereas the Object
Quadtree File will reference outcrop objects (object ids). The cell identifier is taken to
be the Morton code of the bottom left-hand coordinate of the cell. This identifier is

coupled with the cell size to record the location and extent of the cell. The maximum

number of data item references per cell is set, arbitrarily, to 10, for all quadtree files.

At this stage of database creation no surface triangles for either the ground surface
horizon or any of the subsurface horizons will have been created. Therefore, each of the

corresponding quadtree files (at each level) are initialised as empty (that is, one cell,
with no triangle references, covering the full areal extent of the data). Each of the
Object Quadtree Files is also initialised to empty. This is because, at this stage, no
object generalisation has taken place and thus the spatial extent of individual objects

at specific scales is not know.

9.2.3 Generalisation of Outcrop Objects.

Stage three of the database creation process involves the generalisation of the outcrop
objects held in the Primary Outcrop Objects File, and the storage of the resulting

simplified objects. The MGD assumes that all outcrop objects, polygon features and
line features are present at every level of the database. This is due to the absence of

generalisation functions in which objects, polygons and lines are created and deleted. In

the case of outcrop objects and polygon features the MGD also assumes that their

constituent part descriptions do not change between levels. Therefore, there is need to

store outcrop object and outcrop polygon descriptions only once, and this is catered
for by the Outcrop Objects File and the Outcrop Polygons File (Figure 9.1). Each record
in the Outcrop Objects File corresponds to a single outcrop object and consists of an
object identifier (object id), an object type identifier (object-type), an object
description (object_desc) and lists of the polygon (polygon ids), line (line-ids) and

point' (point_ids) features which make up that object. Each Outcrop Polygons File

record refers to a particular polygon and consists of a polygon identifier (polygon-id)

and the list of line features (line-ids) which make up the polygon.

Object generalisation in some measure is achieved by applying the Douglas-Peucker

algorithm to each of the line features (held in the Primary Outcrop Lines File) from

which an object is made up. For each line feature, the Douglas-Peucker algorithm is

applied for each of the k levels of generalisation, with the appropriate error tolerance,

obtained from the Database Description File (an exact copy of the Primary Database
Description File), being applied in each case. The results obtained from the

138

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database '

generalisation of a single line feature are initially held in a main memory line

generalisation tree. Permanent storage of these results is provided by the Outcrop Lines

Files, of which there is one for each level in the database. Each Outcrop Lines File

record can be thought of as a level in a line generalisation tree. An individual line

feature (line_id) is described by a list of constituent points (point-ids), and a list of

sequence numbers (seq_nos) indicating the position of each point in the original line

description. The adjacent outcrop regions pointers for each line are stored in the Line

Adjacency File, each record of which is made up of a line identifier (line-id) and

references to the outcrop objects which lie to that line's left (object left) and right
(object_right). After all lines have been generalised it is possible to insert object

references into each of the object quadtrees.

During line generalisation it becomes evident that some points are not required by the

database, that is, they are not selected by the Douglas-Peucker algorithm at any level

of significance. When a point is selected, it is stored in the Outcrop Points File at the

appropriate level of the database, and deleted from the Primary Outcrop Points File.

Each Outcrop Points File record refers to a single point and consists of the point's

unique identifier (point_id) and its x, y and z coordinates (x-value, y-value and

z value).

9.2.4 Creation of Constrained Delaunay Pyramids.

The final stage in the database creation process is to create the constrained Delaunay

pyramids needed for each surface represented in the model, that is, the ground surface

and each subsurface. A method for constructing each of these pyramids has been

described in Section 8.4.4. The database arrangement for storing a single pyramid is the

same as that for the pyramid storage in the MTSD (see Section 6.2.1). Consider the

storage of the ground surface pyramid, CDPg. Three database files are required per

level to store this pyramid, namely, the Ground Triangle File, the Ground Internal File

and the Ground Boundary File. Each Ground Triangle File holds details of the triangles

which exist at its particular level in the pyramid. Each record in the file corresponds to

a triangle and consists of a triangle identification number (tri_id), a flag (tri_type)

indicating the triangle type (0,1 or 2 corresponding to internal, boundary or external)

and, where required, a pointer (geoirr id) to the appropriate record in either the Ground

Internal or Ground Boundary File. If a triangle exists at more than one level, in the form

of a boundary or external triangle in the lower level, it will have the same tri id at each

level. The Ground Internal File holds the full geometry and adjacency information for

internal triangles. The Ground Boundary File holds the adjacency information for

boundary triangles, the vertices of which are found by obtaining details from a higher

level Ground Triangles File. There is no need to have a Ground External File since

adjacency and geometry information of external triangles is found by retrieving details

from a higher level. In a similar fashion, each of the subsurface pyramids require three

139

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database '

files per database level. For a particular subsurface, i, these files will be Subsurface i
Patch 1 Triangle File, Subsurface i Patch 1 Internal File and Subsurface i Patch 1
Boundary File. During the creation of pyramids, points are included at a particular
level according to either their contribution to the form of a surface or their level

assigned by the Douglas-Peucker algorithm. Whenever a point is chosen to be included

in a pyramid it is added to the appropriate points file and deleted from its primary
file. After each pyramid is created the appropriate quadtree files are updated.

During the creation of the subsurface pyramids fault objects are extrapolated onto
subsurface triangulations, creating extrapolated fault objects (Section 8.4.4.3). These

objects are always made up of extrapolated line features, which are themselves made
up from extrapolated points. The extrapolated line features are stored in the
Extrapolated Lines Files, of which there is one for each level in the database. The
format of these files is the same as that of the Outcrop Lines Files. Extrapolated points

are stored in the Extrapolated Points Files, the format of which corresponds to that of
the Outcrop Points Files.

9.3 Database Retrieval and Update.

A number of basic database retrieval operations are included as part of the prototype

system. These operations allow for the retrieval of the ground surface, outcrop objects

and each of the subsurface horizons at different levels of detail and for particular areas-

of interest. Three parameters are needed to define a specific query. The first parameter
indicates what type of information is to be retrieved. The information type is described

in terms of an integer code value, with -1 referring to outcrop objects, 0 to the ground

surface, and the values 1,2,....., n corresponding to each of the n subsurface horizons.

In the case of the BGS data the values 1,2 and 3 are assigned to the LLL Formation,

the GRF Formation and the NS Formation respectively. The second query parameter

specifies at which level of detail the information is required and is defined by an integer

value corresponding to the required level. The third parameter defines the area of
interest over which information is required. This area is defined in terms of a bounding

rectangle which is described by two x, y coordinate pairs, the first corresponding to the
bottom left hand corner of the bounding rectangle, the second to the top right hand

comer. As an example, consider a query to retrieve subsurface horizon GRF at detail

level 3, the area of interest being a 1000m square region with bottom left hand corner

coordinates (40000,20000). The corresponding MGD query would be (2,3,40000,

20000,41000,21000).

No database update operations are provided by the prototype system. However, it is

pointed out that the underlying data structures on which the database is based (that is,

the CDP, the line generalisation tree and the quadtree) in their original form allow for

update. It therefore follows that the MGD will lend itself to the future inclusion of
140

www.manaraa.com

Chapter 9A Multi-Scale Geological Database

update operations. Note also that the point and edge insertion algorithms used in the

creation of the CDPs are themselves dynamic and could readily be adapted to

facilitate the insertion of new data.

9.4 Testing the MGD System.

The MGD system has been used to model terrain, outcrop and borehole data supplied

by BGS. The test data lies within the same 2km x 2km region as that described in

Section 6.2.4. The terrain consists of 380 points, the distribution of which is shown in

Plate 9.1. The outcrop data, illustrated in Plate 9.2, consists of 20 objects made up

from a total of 20 polygons and 143 lines. The objects represent geological outcrop

regions and geological faults. There are 81 boreholes situated within the test site (Plate

9.3), which provide evidence of 3 subsurface horizons, namely, the LLL (Lincolnshire

Limestone) Formation, the GRF (Grantham) Formation and the NS (Northamptonshire

Sands) Formation. When processed as described in Section 8.4.4.2 the borehole data

gives rise to 3 subsurface elevation files, corresponding to each subsurface horizon. The

LLL Formation is described by 54 points, the GRF Formation by 80 points and the NS

Formation by 78 points.

Plate 9.1 - The distribution of terrain data (380 points).

141

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Plate 9.2 - The outcrop data, consisting of 20 objects (13 outcrop regions and 7
faults).

Plate 9.3 - The distribution of boreholes (81).

142

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

A series of test databases have been created with various error tolerances applied in

each case. The results of database creation performance tests and database

comparison tests, similar to those described in Chapter 6, are shown in Figure 9.3 and
Figure 9.4 respectively. Database creation time appears satisfactory, as was the case
with the 2-D MTSD implementations described in Chapters 6 and 7. The comparison
tests again highlight the relative merits and demerits of the multi-scale approach.
Storage savings gained when compared to multiple representation are at the cost of an
increase in query response time, while when compared to a generalisation at run-time
approach, reduced response time is countered by an increase in storage.

Database Number Vertical Lateral
Number of

terrain
Number of
topographic Number of

Number of borehole Number
is per subsurface Creation

Name of levels nor(m) Error (m)
points points edges LLL GRF NS time (s)

300 50 216 227 49 71 70
1 3 12.5 90 288 0

10 10 148 198 515 54 75 74
350 85 157- ----T6-T- 49 71 9

2 3 10.5 25 77 129 317 50 73 71 316 0
.

400 100 150
--- -

138 150 00 68
3 3 Ts 140 72 341 0

9 .

Figure 9.3 - Database creation performance results for MGD.

Method Number
of levels

Vertical
Error (m)

Lateral
Error (m)

Storage
(K-bytes) retrieve all

triangles (s) retrieve aU
objects (a)

retrieve all LLL
triangles (a)

retrieve all CRF
triangles (a)

retrieve all NS
triangles (s)

MGD 3 125
- -

518 210
- 160 10.0 11.0 -Tr=

TT
__I. L_ _

M= 180 110 11 G 120

ralisation 300 810 32 0 Gene
i 1 125 290 380 797- 760 me. at run-t 10 1320 490 76. u b 1.0 82.0

lti l Q

ad

Mu p e 3 12 5 1 2.5 813 17 0 10 0 8.0 9.0
representation 12

-
J-15 0 811 b

MGD 3 10.5 25 521 240 140 110 110
- -

alisation
15.0 85 94 0 33 0 70 0 71 o Gener

290 5
at run-time. 10 157 0 47.0 820 840

Multiple
i 3 25 793 150 12 0 90 90 on representat

400 100 130- 90 go 100- 110
MGD 3 75 568 24 0 18 0 100 lie

-
tion li

7 0 940 31 0 730 750 sa Genera
290 141 360 780 740

at run-time. 0.5
-

2040 500 85.0 860 890 In= 0 80 90 Multiple 3 75 821 150 135 10 0 10 0
representation

Figure 9.4 - Results of comparison tests between MGD, generalisation at run-time
and multiple representation.

Database 3 (levels 1 and 3) is illustrated in Plates 9.4 - 9.23.

143

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Plate 9.4 - Database 3, level 1 ground surface triangulation. Plan view.

Plate 9.5 - Database 3, level 1 ground surface triangulation. Shaded, perspective view.

144

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Plate 9.6 - Database 3, level 1 LLL triangulation. Plan view.

Plate 9.7 - Database 3, level 1 LLL triangulation. Shaded, perspective view.

145

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Plate 9.8 - Database 3, level 1 GRF triangulation. Plan view.

Plate 9.9 - Database 3, level 1 GRF triangulation. Shaded, perspective view.

146

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Plate 9.10 - Database 3, level 1 NS triangulation. Plan view.

Plate 9.11 - Database 3, level 1 NS triangulation. Shaded, perspective view.

147

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Plate 9.12 - Database 3, level 1 subsurface triangulations.

Plate 9.13 - Database 3, level 1 all triangulations.

148

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Plate 9.14 - Database 3, level 3 ground surface triangulation. Plan view.

Plate 9.15 - Database 3, level 3 ground surface triangulation. Shaded, perspective view.

149

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Plate 9.16 - Database 3, level 3 LLL triangulation. Plan view.

Plate 9.17 - Database 3, level 3 LLL triangulation. Shaded, perspective view.

150

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Plate 9.18 - Database 3, level 3 GRF triangulation. Plan view.

Plate 9.19 - Database 3, level 3 GRF triangulation. Shaded, perspective view.

151

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Plate 9.20 - Database 3, level 3 NS triangulation. Plan view.

Plate 9.21 - Database 3, level 3 NS triangulation. Shaded, perspective view.

152

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Plate 9.22 - Database 3, level 3 subsurface triangulations.

Plate 9.23 - Database 3, level 3 all triangulations.

153

www.manaraa.com

Chapter 9A Multi-Scale Geological Database

9.5 Problems and Discussion.

The prototype GSIS described in Section 9.2 is not without its limitations, the most

notable of which is its inability to cope with multi-valued surfaces. This particular

shortcoming is one which had been foreseen, but for the particular data sets modelled
in this thesis was not thought to present a problem. However, some thought has been

given as to how multi-valued surfaces can be catered for in the future, a report of which
is given here. Other problems concerning the prototype system only came to light during

the testing of the system. These mainly concerned invalid intersections between

adjacent surface triangulations. Solutions to these problems have been found, and
implemented, and are also described here.

9.5.1 Coping with Multi-Valued Surfaces.

As indicated at the start of Section 9.2, a limitation of the prototype system is its

inability to cope with multi-valued surfaces. This problem does not prove a hindrance

for ground surface models, or indeed for some subsurface models such as those

obtained from the BGS data. For example, consider a set of points S. representing a

portion of the Earth's surface. Each point of Sg consists of an x, y and z coordinate.
For the purpose of constructing the Delaunay triangulation (2-D Delaunay tessellation)

of Sg it is usual to consider only the x and y values of each point and neglect the z

value. This is analogous to only considering the x, y value of the intersection each point

makes with the xy-plane when projected in a vertical direction towards that plane. The

z value is selected for omission from considerations, as opposed to either the x value or

y value, on account of the Earth's surface being much less likely to be multi-valued in

the xy-plane than in the yz-plane or xz-plane.

(a)

Figure 9.5 - The effect of triangulating on planes. (a) A set of points triangulated on the
xy-plane. (b) The correct surface, obtained by triangulating on the yz-plane.

154

(b)

www.manaraa.com

Chapter 9A Multi-Scale Geological Database

This fact would not necessarily be true for a set of points SS representing a geological
boundary in the subsurface. Here the surface is more likely to be multi-valued in the xy-

plane than for Sg. This is due to the complex faulting and folding which takes place in

the subsurface. In general, such surfaces may be of any orientation and may be

overfolded, at least relative to the horizontal plane. As an example, Figure 9.5a shows
the surface which results from the Delaunay triangulation in the xy-plane of a set of

points, which is in fact quite different from the true surface, shown in Figure 9.5b. This

is due to the fact that the true surface is multi-valued in the xy-plane. Therefore, an

alternative method for constructing a surface triangulation of SS has to be found.

9.5.1.1 Data Segmentation.

With a prospective method in mind, attention is drawn to work described by

Boissonnat [113], in which procedures for the Delaunay triangulation, in 2-D and 3-D,

of arbitrarily oriented surfaces are presented. In the 2-D case, collections of vertices are

projected onto local planes on which triangulation takes place. Vertices which are

triangulated together are assumed to belong to a neighbourhood of vertices which

represent a surface which is single-valued relative to the local plane, which itself is

derived by a least square fit. This method is limited in that it requires that vertex

neighbourhoods be defined in advance. If data sampling is dense then this is not a

problem since it can be assumed that any vertices lying within a reasonable distance of

another vertex is in the neighbourhood of that vertex. When working with subsurface

geological data, this assumption would not always hold true, since data may be

sparsely distributed, and at the same time be representing complex structures.
However, if some other means by which neighbourhoods could be defined was

available, then the method would seem to be suited to the task in hand. One possible

way in which this might be achieved is by dividing the vertices into subsets according
to localised measurements of gradient (the trend of the surface). Another technique

could involve a geologist interactively splitting up the data via a suitably designed 3-D

graphics interface. Once all neighbourhoods are defined, they are each triangulated

separately as normal, except that projection is onto a local plane of appropriate
orientation. Triangulations, having been constructed, could then be be 'zipped' across

common borders to form a complete surface. Algorithms for 'zipping' triangulations
together in the xy-plane are given in the literature [11,12]. These algorithms could be

adapted to cater for arbitrary planes.

It may also be the case that the best plane of projection is not always the least square
plane. In such cases, the availability of other information might assist in deciding upon
the best plane. An experimental program has been implemented which uses dip
information to decide on what this plane may be. For example, given sufficient dip

information, the program correctly identifies the yz-plane to be more appropriate than
the xy-plane as the plane of projections for the data given in Figures 9.5a and 9.5b.

155

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

Projecting onto the yz-plane does in fact produce the correct surface triangulation.

9.5.1.2 Computing the 3-D Delaunay Tessellation.

A second approach to solving the multi-valued surface problem is to consider

algorithms which compute the 3-D Delaunay tessellation, such as those published by

Riedinger et al [117], Tanemura et al [118], Devijver and Dekesel [119] and Boissonnat

[113]. For the problem being discussed here, the approach would be to use the 3-D

tessellation only as a temporary structure, from which the bounding surface
triangulation could be extracted. The extraction of the surface would be assisted by

taking into consideration any known constraints, such as dip, on the data. The paper
by Devijver and Dekesel describes a dynamic procedure where points are inserted one

at a time into an existing tessellation which is repeatedly updated. This method is

equivalent to the 2-D algorithms already implemented and could therefore be well

suited to a multiresolution model. Boissonnant suggests a 3-D volumetric approach

where the surface represented by a set of vertices is found by determining the boundary

of a 3-D tessellation. Initially the volumetric tessellation occupies the entire convex hull

of the vertices, after which tetrahedra occupying what are assumed to be concavities of

the surface are progressively eliminated. A limitation of this method is that the

resulting triangulated surface can only be expected to correspond topologically with the

real surface if the original vertices have been obtained by a relatively regular and dense

sampling of the object surface.

9.5.2 3-D Spatial Conflict.

During the testing of the 3-D multi-scale database it became apparent that in certain
instances topological errors, or spatial conflict, had occurred. These errors involved

invalid intersections between adjacent surfaces.. For example, each of the subsurface

triangulations intersected the ground surface triangulation in a number of places. In

some cases a subsurface triangulation was found to intersect one or more other

subsurface triangulations. Through experimentation it was found that the spatial

conflict was caused in one of three ways. An explanation of each cause of error, and

solutions, is now presented.

9.5.2.1 Conflict due to Data Set Discrepancies.

This error type came to light as a result of observing triangulated surfaces of the type

shown in Figure 9.6a. This error, in the first instance, is considered to have occurred as

a result of a sampling discrepancy existing between the ground surface data and the

subsurface elevation data (obtained from the borehole data). The discrepancy causes

spatial conflict between the two surface triangulations. A partial solution to this

problem is to ensure that the data sets in question are as well matched as possible.
This has been achieved by introducing the top of borehole height measurements

156

www.manaraa.com

Chapter 9A Multi-Scale Geological Database

(included in the original borehole data) as additional elevation data in the ground
surface data file (Figure 9.6b). This has the effect of offering a better match between

data sets, and subsequently, an improved model.

CROSS-SECTION

Ground
surface

Subsurface (a)

CROSS-SECTION

(6)

" terrain data point

o point derived from
borehole data.

Figure 9.6 - Spatial conflict due to a data discrepancy. (a) The subsurface incorrectly

intersects the ground surface. (b) The top of borehole measurements are introduced in the
terrain data, in this case resulting in spatial integrity.

A further problem is encountered due to discrepancies between the outcrop data,

ground surface data and subsurface data. Consider the cross section shown in Figure

9.7a which contains no conflict. However, if the ground elevation point i was not
included in the ground surface data set, which will sometimes be the case with real
data, the cross section will appear as shown in Figure 9.7b. Here the ground surface
triangulation has become co-incident with the subsurface triangulation. It can be
deduced that such conflict occurs when ground surface triangles are made up entirely

of points which belong to the same region outcrop object. A first pass attempt at

resolving this situation is to check if there are any currently unused subsurface points
(held in the appropriate primary subsurface points file) which lie within one of the

offending ground surface triangles. If a suitable subsurface point is found it is added to

the subsurface triangulation. Also, to ensure consistency between triangulations, the
top of borehole height measurement is added as an elevation point to the ground

surface triangulation. If no suitable subsurface point is found the next step is to check if

any suitable currently unused ground elevation point (held in the Primary Ground

Surface Points File) is available. If an unused ground elevation point is found which lies

within an offending triangle, it is only inserted if it lies above the current ground surface
triangulation. A point which lies below the triangulation, if inserted, will result in
intersection between its triangulation on the currently co-incident subsurface
triangulation.

157

www.manaraa.com

Chapter 9

CROSS-SECTION

GRF

(a)

A Multi-Scale Geological Database

CROSS-SECTION

LLL

GRF

(b)

Figure 9.7 -A second error due to a data discrepancy. (a) Surfaces contain no conflict. (b)

Point i is removed resulting in co-incidence of the base of the LLL Formation and the ground
surface.

If no suitable unused point is available the solution is to create and insert a dummy

point into either the ground surface triangulation or subsurface triangulation in such a

way as to remove the conflict. Which of these is the better option will depend on the

form of each of the surfaces. For example, in Figure 9.7b it would appear sensible to

create a dummy point in the ground surface triangulation in such a way as to slightly

raise the ground surface elevation in its vicinity. In Figure 9.8 a better approach would

seem to be to insert a dummy point in the subsurface triangulation, slightly lowering the

subsurface elevation in its vicinity. Automation of this choice making process would
involve examination of all triangles, and their respective gradients, within the vicinity

of the place where spatial conflict has occurred. This process has not been

implemented in the current version of the MGD. At present the dummy point is always
inserted in the ground surface triangulation.

CROSS-SECTION CROSS-SECTION CROSS-SECTION

LLL
LLL

LLL GRF

GRF GRF

(a) (b) (c)

Figure 9.8 - Insertion of dummy point to restore integrity. (a) The correct surface cross-

section. (b) Surfaces in conflict. (c) The solution is to add a dummy point i into subsurface.

9.5.2.2 Conflict due to Generalisation.

The problem of spatial conflict caused by application of the Douglas-Peucker algorithm
to line data has been addressed in Appendix 1. During testing of the 3-D system it was

observed that spatial conflict also occurred as a direct result of surface generalisation.
The conflict is in the form of intersections between surface triangulations (Figure 9.9a).

This problem can be remedied by re-inserting currently unused points in areas of
conflict in way analogous to the 2-D solutions proposed in Append? 1. However, this

158

www.manaraa.com

Chapter 9 A Multi-Scale Geological Database

is not the method used in the MGD system at present.

CROSS-SECTION CROSS-SECTION

surface A

surface B

(a) (b)

Figure 9.9 - Conflict due to generalisation. (a) The inclusion of point i in surface A causes

conflict with surface B. (b) The solution is to include point j in surface B, point j being derived
from same borehole as point i.

A simpler approach is adopted in which a condition is placed on certain of the points

selected for a particular surface. The points to which the condition is applied are those

which have been derived from borehole data (that is, subsurface elevation data and

tops of borehole ground surface data). The condition insists that if any such point is

selected for use in a particular surface triangulation, then all points derived from the

same borehole as that point must also be added to the appropriate previously created

surface triangulation and be included in any yet to be created surface triangulations,

thus ensuring consistency between adjacent surfaces (Figure 9.9b). This method, while

not being optimal with regards the number of points included in the model, is effective

in removing spatial conflicts caused by surface generalisation.

9.5.2.3 Conflict due to Incorrect Insertion of Constraints.

Despite application of the conflict resolution techniques described in Sections 9.5.2.1

and 9.5.2.2, conflict still occurred between the ground surface triangulation and certain

subsurface triangulations. The reason for this problem was diagnosed as being an
incorrect assumption made about the topographic properties of the geological outcrop

region objects. The assumption made is that the edges from which these objects are

made have special influence on the topography of a surface, in much the same way as
the edges defining a ridge influence ground surface topography. Therefore, in the

algorithms used to date, the topographic surface is forced to conform to edge

topography when edges are inserted as constraints. In other words, the edge data

assume greater significance than the surface data. Figure 9.10 shows how this

assumption can affect ground surface and subsurface spatial integrity. It is suggested
here that the edges from which a geological outcrop boundary are made up to do not

possess such topographic significance and therefore, when inserted into the surface
triangulation, they should be forced to conform to surface topography.

159

www.manaraa.com

Chapter 9

CROSS-SECTION

LLL ý"

outcrop point
GRF

(a)

A Multi-Scale Geological Database

CROSS-SECTION

GRF
outcrop point

-. LLL

(b)

Figure 9.10 - The effect of forcing the ground surface to conform to geological outcrop

region object constraints. (a) The correct cross section. (b) Conflict resulting from the
insertion of constraint.

A constraining algorithm which adopts a more surface conforming approach is given by

Kraak and Gazdzicki [69]. The method addresses the problem of inserting an edge,
defined by its end points pl and p21' into an existing triangulation. It is assumed that

the points are already part of the triangulation. The algorithm begins by testing if the

edge already exists. If so, the algorithm terminates. If the edge does not exist the next

step is to generate a dummy point pd with x and y coordinates taken as the mid-way

point between pl and p2. The z value of pd is interpolated using the current surface

triangulation. The algorithm is now repeated, in turn for edge (pl, pd) and edge (pd, p2).
The recursive procedure repeats itself until eventually p, and pi are connected by a

series of one or more co-linear edges.

This surface conforming algorithm now forms part of the MGD triangulation library

and is used as part of the model creation process. When triangulating the ground

surface, any outcrop polygon edge inserted as a constraint is inserted as a surface

conforming edge. Dummy points, created during this process are stored in the Outcrop

points File. They are distinguished from other points by being assigned negative point
identifiers. It is also necessary to update the line descriptions in the Outcrop Lines File.

It is should be noted that a dummy point is only relevant to the level at which it was
created. Therefore when reconstructing a line at a particular level of significance, all

points which have negative identifiers and are at a higher level in the database should
be ignored. The triangulation of subsurfaces reverts to the edge conforming constraining

algorithm. This is to ensure that there is an exact match between the meeting points of
the ground surface and subsurface.

The Kraak and Gazdzicki algorithm, while appearing to solve the problems caused by

the test data sets, does not insert edges which conform absolutely to the triangulated

surface. It does however produce a constrained triangulation which more closely

conforms to the original triangulation than the previously used algorithm (see Section

160

www.manaraa.com

Chapter 9A Multi-Scale Geological Database

2.4.4). An algorithm which inserts constraints which conform precisely to the surface
has also been implemented. The algorithm is illustrated in Figure 9.11. Consider an edge
(Pa, Pb) to be inserted into an existing triangulation T. It is assumed that pe and Pb

already belong to T and that the edge (Pa, Pb) does not exist. It follows that the

proposed edge makes one or more intersections with existing triangle edges. Let the

number of intersections be n and dummy points pl... p,, be created. The height value of

each dummy point is interpolated from the current triangulation. It is now possible to

insert the series of edges (pa, pi), (Pl' P2)....... (Pn. v p�) and (pa, Pb) into the

triangulation, thus forming a series of co-linear , surface conforming edges between pa

and Pb* A disadvantage incurred by this method, when compared to the Kraak

algorithm, is an increase in the number of dummy points.

P
a

pbp

a

p

(a) (6)

Figure 9.11 - The insertion of a surface conforming constraint. (a) Triangulation before
insertion. (b) Triangulation after insertion.

9.6 Summary and Conclusions.

This chapter has described a successful implementation of the MGM. Three types of
data, namely, terrain data, outcrop data and borehole data, have been combined to

form a multi-scale 3-D triangulation-based geological model, which is stored efficiently
in an ISAM database. The use of outcrop objects as constraints in both ground surface

and subsurface triangulations, thus forming an accurate definition of where each

subsurface intersects the ground surface, appears to offer a novel, and accurate, means
by which geology can be represented. This technique is of equal benefit when applied in

either a single-scale or multi-scale environment. The multi-scale aspect of the model

also offers new and useful tools for the geologist. Some of the issues concerning the

modelling of multi-valued surfaces have also been addressed. It is thought that a

method based on the segmentation of data into locally single-valued patches offers the
best prospect for future success with regards obtaining a solution to this problem.

161

www.manaraa.com

Chapter 10

Thesis Summary and
Conclusions

www.manaraa.com

Chapter 10

10.1 Introduction.

Thesis Summary and Conclusions

This thesis has described the research undertaken in order to develop and implement a
number of data storage schemes suited to the efficient multi-scale representation of
integrated spatial data. In this concluding chapter, Section 10.2 begins with a summary
of the research, outlining both the benefits derived and conclusions reached. Section

10.3 then provides suggestions as to how the work might be progressed in the future.
Final remarks are made in Section 10.4.

10.2 Project Summary and Achievements.

The overall aim of the work reported in this thesis can be summarised as the design

and implementation of data storage schemes, or data models, suited to the efficient
multi-scale representation of integrated spatial data. In addition to model design, the
fulfilment of this aim has involved the development of methods by which the models
can be created. These intentions were borne out of an observation that current GIS, and
their geological counterpart GSIS, are poor in terms of offering data modelling facilities

which include the integration of data of different types, and that they cater for data at

only a single-scale.

In Chapter 1 the author has attempted to demonstrate the limitations of the various
approaches adopted by current systems and has given reasons as to why the use of
integrated multi-scale methods will be of benefit. In particular, the thesis has

concentrated on finding solutions to two specific problems. The first, relating to GIS,

has involved providing an efficient means of storing a combination of terrain data and
topographic feature data at multiple scales. This data has been assumed to be

spatially extensive. The second problem concerned the efficient multi-scale

representation of 3-D geological data, consisting of terrain, outcrop and borehole data.

Again, the assumption is that this data is spatially extensive. Solutions to both

problems, in the form of ä number of data model designs and database

implementations, have been found and have been reported in the thesis. Details of
publications relating to this work are given in Appendix 3.

10.2.1 Combining Terrain and Topographic Data at Multiple Scale.

Initially the work concerned itself with the integration and multi-scale representation of
the two geographic data types, namely, topographic feature data and terrain data.
Details regarding this part of the project are found in Chapters 2 to 7. It has been

noted that GIS are currently restricted to the separate representation of topographic
data and terrain data, while the representation of data at various scales can only be

accommodated by adopting a multiple version approach. By comparison, an
integrated multi-scale representation was thought from the outset of the project to have

several distinct advantages, and be of benefit to a variety of disciplines. These

163

www.manaraa.com

Chapter 10 Thesis Summary and Conclusions

advantages have been outlined in Chapter 1. Chapters 2,3 and 4 have provided an

overview of currently available data structures suited to the storage of the data types

being considered. These chapters have revealed that while some current data structures

meet certain of the requirements of the proposed data storage scheme, none meet all

the requirements. Following the review it was decided that the best approach to

meeting the full requirements of the proposed scheme would be to adapt and merge

those current data structures which appeared most useful in such a way as to form the

integrated multi-scale data model. This resulted in three such data structures, namely,

the line generalisation tree, the constrained Delaunay pyramid (CDP) and the fixed

grid, being adopted for use as the basis for what has been termed the Multiresolution

Topographic Surface Model (MTSM), details of which are given in Chapter 5.

The MTSM is a new data storage scheme which offers efficient multi-scale storage of,

and access to, topographic data and terrain data. Data integration is achieved by

embedding the line features making up topographic objects as constraints within a
CDP. Line definitions are stored in a series of line generalisation trees. Efficient spatial

access is provided by means of an adaption of the fixed grid method. The MTSM is

created by means of a construction algorithm which is based on a combination of the

Douglas-Peucker line simplification algorithm and De Floriani's error-directed

constrained Delaunay triangulation algorithm. Chapter 5 also provides a brief

argument in justification of the use here of the Douglas-Peucker algorithm. This is

included in answer to a series of comments in recent papers which have shed doubt on

the suitability of the Douglas-Peucker algorithm to line generalisation.

Two prototype database systems, MTSD 1.0 and MTSD 2.0, based on the MTSM

design have been implemented. Details regarding these implementations are found in

Chapter 6. The first implementation, MTSD 1.0, adopts the relational database

ORACLE as its primary data storage medium, while MTSD 2.0 makes use of an ISAM

file handling library. The performance of both systems has been evaluated in a series of
tests. These tests have served to demonstrate the viability of the MTSM and its

accompanying construction algorithm. System testing has also emphasised the relative

advantages and disadvantages of adopting a multi-scale approach as opposed to

either generalisation at run-time or multiple representation. The generalisation at run-
time method has been shown to offer data storage benefits when compared to MTSM,

but at the expense of an increase in data retrieval time. Conversely, the multiple version

approach provides a quicker response to queries than MTSM, but suffers in that it

incurs an increase in data storage.

Chapter 7 begins by describing a new version of the Implicit TIN data storage scheme.
This new version offers improved performance when compared to the old in that it

allows for the insertion of constraining segments and guarantees to produce the same

164

www.manaraa.com

Chapter 10 Thesis Summary and Conclusions

triangles as would be produced by a conventional constrained Delaunay triangulation

algorithm. Included as part of the new Implicit TIN is a new constrained Delaunay

triangulation algorithm, specifically designed for use in the Implicit TIN environment.
Advantage is taken of these improvements to the Implicit TIN when it is applied to an
Implicit version of the MTSD. The Implicit system, termed I_MTSD, offers considerable

savings in storage when compared to MTSD 2.0, at the cost of only a slight increase in

query response time. A further advantage of the Implicit TIN approach is that it offers
flexibility with regard to the choice of which constraining objects are included in a

particular triangulation.

10.2.2 Combining Geological Data Types at Multiple Scale.

Chapters 8 and 9 are concerned with extending the previously described work into 3-D

and applying it to geological data. These chapters are related to the 3-D GIS project

currently being carried out at BGS. Chapter 8, after giving a brief introduction to the

topic of 3-D GIS, or GSIS, proposes a design for the ideal GSIS data model. The

proposal suggests that a GSIS data model should be able to accommodate objects
derived from various sources of data, allow for the multi-scale representation of these

objects and provide spatial indexing on objects. It is also necessary to include

algorithms for creating the model. The proposal suggests that two fundamental object

types need to be accommodated, namely, hard-objects and soft-objects. It is put
forward that hard-objects can adequately be catered for using a boundary

representation method, while the octree method would appear suited to storing soft-

objects. The model creation algorithms would need to provide facilities for object

generalisation, integration of data from different sources and be able to cope with

sparse data representing complex objects. It is also proposed that spatial indexing can
be provided for by adopting an octree approach.

Chapter 8 concludes with the description of a prototype multi-scale 3-D model design,

the MGM, which integrates topographic data, terrain data and subsurface elevation
data. The MGM, an extension of the MTSM, uses a series of CDPs to provide multi-
scale storage of, and access to, ground surface and subsurface horizons. A particularly

useful, and novel, aspect of this work is the well defined relationship which exists
between the subsurface horizons and the ground surface. This is made possible by the
inclusion of geological outcrop objects as constraints in both the ground surface and
subsurface pyramids, thus creating common edges at those places where subsurface
horizons intersect the ground surface. A method for model creation is also described

and includes new techniques by which faults lines, present in the ground surface, can
be automatically extrapolated into the subsurface, thus producing a more accurate
model.

Chapter 9 reports the details of an ISAM implementation of the prototype 3-D model.
165

www.manaraa.com

Chapter 10 Thesis Summary and Conclusions

The implementation, termed the MGD, has been successfully tested using data

obtained from BGS. As was the case with the MTSD systems, comparison tests have

shown that the MGD system performs as would be expected when compared to

equivalent generalisation at run time and multiple version database systems. The

multiple version approach offers a better response to queries than MGD, at the

expense of an increase in storage costs. The MGD has been shown to provide faster

query response times than a generalisation at run time system, but this is countered by

an increase in storage costs. Note that the MGD system is limited in that surfaces can

only be single-valued with regards the xy-plane. However, this has not proven to be a

problem when modelling the BGS data set. Nevertheless, Chapter 9 has included some

suggestions as to how multi-valued surfaces may be supported in the future.

10.3 Future Work.

What is apparent at the conclusion of this research project is the wide scope for future

development of the work. Due to time constraints, many avenues of potential interest

that have been uncovered during the project have not been fully pursued. With this in

mind, this section gives suggestions for further work. The list of suggestions does not
include all the ideas that have arisen but confines itself to those areas which the author
thinks warrant most immediate attention.

10.3.1 Scale and Generalisation.

It is noted that in each of the new data models described in this thesis, points are

selected for inclusion at a particular level depending on either their importance in

describing a surface or their significance in describing a particular topographic object.
Thus terrain data and subsurface elevation data points are selected according to their

vertical displacements relative to the surface to which they belong, while topographic

object points may also be selected on the basis of their lateral displacement. In the

former case, point selection is achieved as the result of applying an error-directed point
insertion triangulation algorithm, which can be regarded as the 2.5-D equivalent of the

Douglas-Peucker algorithm, while in the latter case points are selected by applying a

conventional Douglas-Peucker algorithm. It would seem that a logical progression,

particularly in the context of the geological data model, would be to develop a 3-D

version of the Douglas-Peucker (or any better 2-D generalisation) algorithm, in which

points are selected on the basis of their overall contribution to the shape of the surface

or object to which they belong.

The issues concerning the automated generalisation of 2-D map data are currently

receiving much attention in the literature [44,45,46,47,48]. It is apparent that much
work is still to be done before solutions to all the problems associated with this task

can be said to have been solved. The multi-scale models described in this thesis each

166

www.manaraa.com

Chapter 10 Thesis Summary and Conclusions

provide efficient storage of, and access to, generalised versions of source data. The

generalised versions are geometric subsets of the original data and therefore data

duplication, at least for line feature and surface representation, is avoided. Note that

with regards topographic data this thesis has restricted itself to automated line

simplification. It is hoped that in the future the MTSD and MGD systems will
incorporate additional topographic data generalisation capabilities, such as, selection,

exaggeration, combination, displacement and symbolisation, relating to polygon and

point features, as well as to lines. Work is currently being undertaken at the University

of Glamorgan, as part of another PhD project, which is seeking to develop functions

which perform certain of these tasks [121,48]. The generalisation techniques adopted
involve the map data undergoing generalisation operators that are applied to

constraints within a TIN model. There is a definite connection between the two projects

and obvious scope for inclusion of the more advanced generalisation operations within
the multi-scale database systems described in this thesis. However, it must be noted
that when applying operations such as exaggeration, displacement and symbolisation
to assist in large changes in scale a multi-scale approach is inappropriate. This is

because the derived, smaller scale version is no longer, in a geometric sense, a subset of
the larger scale version. This does not however rule out the use of multi-scale data

structures for separately representing both the smaller and larger scale versions across
their different scale ranges. Such an approach is adopted in the multi-scale database

suggested by Jones [122].

Throughout the thesis the terms 'scale', 'resolution', 'generalisation level', and other
similar expressions, have been used interchangeably and have assumed the same

meaning, that is, a measure of the amount of detail present in a particular set of data.

This measure, as far as the data models presented in Chapters 5 to 9 are concerned,
has been in terms of two error tolerance values, namely, vertical error and lateral error.
A criticism of the work might be that no attempt has been made to relate these error
tolerances to what professional geographers and geologists regard as scale. The author
believes that if such relationships could be incorporated into the generalisation

algorithms used in the model creation processes they would add considerably to the

usefulness of the models. With regards the generalisation of topographic line data,

attention is drawn to work reported by Abraham [52] regarding the establishment of a
direct relationship between scale and the error-tolerance value supplied to the
Douglas-Peucker algorithm. The approach used was to initially establish a link

between error tolerance and the number of points selected by the Douglas-Peucker

algorithm. This link was then used in conjunction with an adapted version of Topfer's

Radical Law [123], which predicts the number of data objects at a derived scale given
the number of objects at the source scale, to provide a relationship between Douglas-
Peucker error tolerance and scale. Note that this approach to topographic

generalisation is limited in that it views generalisation as purely a -geometric
process

167

www.manaraa.com

Chapter 10 Thesis Summary and Conclusions

whereas in reality it is a highly conceptual process. However, the MTSD and MGD

systems described in this thesis, in their present form, would benefit by the inclusion of

this relationship (and, perhaps, a vertical error tolerance equivalent) since they are

restricted to geometrical generalisation.

An area of automated generalisation which does not appear to have received much

attention in the literature is that which concerns geological data. There appears to be

scope for a great deal of future research to be carried out in this area. Note that much

of the generalisation reported in the literature is specifically geared towards 2-D

geographic data. This work cannot readily be applied to the generalisation of 2-D

geological data (that is, outcrop data) since conventions differ between the

generalisation of geographic map data and the generalisation of geological map data.

For example, the generalisation functions required to generalise a collection of line data

representing a network of roads will be different from those required to generalise a

collection of lines representing a series of faults, such as the en echelon faults shown in

Figure 10.1. The author hopes that some of the issues relating to the generalisation of

geological map data will be addressed in the near future.

(a) (b)

Figure 10.1- The generalisation of a geological map which includes en echelon
faults. Such generalisation is only applicable to geological data. (a) Map prior to

generalisation. (b) Map after generalisation.

An aspect of geological generalisation which could be built into the MGD system with

relative ease is that which concerns the classification of subsurface horizons according
to their relevance to a particular scale. Geologists regard certain subsurface horizons as

being of greater importance than others. A useful tool to geologists would be the ability

to retrieve horizons according to their semantic importance. This could be

accommodated in the MGD system by introducing a subsurface information file which

records the range of database levels over which each subsurface horizon is significant.
Queries involving a subsurface horizon at a particular level of detail would now need

168

www.manaraa.com

Chapter 10 Thesis Summary and Conclusions

to be validated, by checking if the required detail level lies within the specified range of
levels, before being processed further. This mechanism has not been incorporated into

the current version of the MGD system due to a lack of appropriate test data. It is the
intention to include the facility in future versions.

10.3.2 The Modelling of 3-D objects.
A great deal of work remains to be done with regards the creation of the ideal GSIS

data model. Perhaps the greatest limitation of the MGD presented in Chapter 9 is its
inability to cope with multi-valued surfaces. Several techniques have been suggested,
the further investigation of which would appear to be a priority for any future work.
The data segmentation method is believed to offer the best chances of success. Other

limitations of the MGD, such as the absence of 3-D spatial indexing and the exclusion
of soft-object types, are a direct result of time constraints on the project. It is the
intention to include these features in future implementations.

Looking further ahead, it is suggested that a solution to the full automation of the

model creation process would benefit from the introduction of Artificial Intelligence

techniques. This suggestion appears to be vindicated by recently published literature

concerned with the use of knowledge-bases in the management and analysis of 3-D

geological data [115,124,125]. A knowledge-base concerned with assisting in the

model creation process might be expected to contain information such as physical

geological observations concerning the area being modelled (such as dip

measurements), any knowledge the geologist may have about the data being modelled
(that it represents a salt dome, for example) and stereotypical surface shapes (to

which the data in question can be matched). This knowledge will be examined during

model creation and a suggestion as to how modelling can best proceed will be

produced. For example, knowing that a particular data set represents a salt-dome,

perhaps due to a pattern match, could lead to the suggestion of generating a vertical
plane of symmetry through the data, triangulating the two sub-sets thus formed (by

projecting each, in turn, onto the plane of symmetry) and then 'zipping' the two
triangulations together to form the complete surface.

The method by which faults are extrapolated into the subsurface is also limited in the
MGD system in that they require a prior knowledge of dip, throw and depth
information. A means by which this information could be derived from source data

would enhance the fault modelling capabilities of any future system. Mention is made
of work reported by Walsh and Watterson [126,1271 in which methods for estimating
the throw and dip of certain types of fault are described. It is also true that the

characteristics of a fault are related to the type of rock in which it occurs. Another

observation is that when no other information is available, geologists often apply
standard characteristics when modelling a fault. For example, faults are usually

169

www.manaraa.com

Chapter 10 Thesis Summary and Conclusions

assumed to have a dip of about 70° in the absence of any conflicting evidence. Note

also that when sampling is dense enough, subsurface elevation data itself can be used
to identify the presence of faults. It can be imagined that by combining these various

methods and sources of information in a knowledge-based modelling system a more
fully automated, and improved, method of extrapolating fault data into the subsurface

could be achieved.

10.4 Final Remarks.

There can be no doubt that spatial information systems will continue to have a great
impact in both geography and geology. This thesis has based itself on the belief that

such systems will benefit from data models which integrate all available data, and

provide multi-scale representation of this data. It is hoped that this thesis has brought

attention to these potential benefits and has gone a little way to providing data storage

schemes, and associated model construction methods, that incorporate such benefits.

170

www.manaraa.com

References

www.manaraa.com

References

[11 Maguire, D. J. 1991 "An overview and definition of GIS", Geographical
Information Systems (book), Vol. 1, Longman Scientific and Technical publishers,
pp. 9- 20.

[21 Turner, A. K. 1991 "Three-Dimensional Modelling with Geoscientific Information
Systems : preface", Three-Dimensional Modelling with Geoscientific Information
Systems (book), Kluwer Academic publishers, pp. 3-5.

[31 Peucker, T. and Chrisman, N. 1975 "Cartographic data structures", American
Cartographer, Vol. 2, No. 2, pp. 55 - 69.

[4] Van Kuilenburg, 1981 "Segment encoding for the production of low-cost
interpretation maps", ISSS Working Group on Soil Information Systems
Newsletter, No 8, September 1981.

[51 Bondriault, G. 1987 "Topology in the TIGER file", Proceedings of AutoCarto 8,
March 1987, pp. 258 - 269.

[61 Kinnear, C. 1987 "The TIGER structure", Proceedings of AutoCarto 8, March
1987, pp. 249 - 257.

[71 Peucker, T. K. 1978 "Data structures for digital terrain models : discussion and

comparison", Harvard Papers on Geographic Information Systems, First
International Advances Study Symposium of on Topological Data Structures for
Geographic Information Systems, Vol. 5.

[81 Peucker, T. K. et al 1978 The triangulated irregular network", Proceedings of the
Digital Terrain Models (DTM) Symposium, May 1978, pp. 516 - 540.

[9] Gold, C. M. 1979 "Triangulation-based terrain modelling - where are we now ? ",
Proceedings of AutoCarto 4, Vol. 2, pp. 104 -111.

[10] Preparata, F. P. and Shamos, M. I. 1985, Computational Geometry : An
Introduction (book), Springer-Verlag (New York) publishers.

[11] Lee, D. T. and Shacter, B. J. 1980 "Two algorithms for constructing a Delaunay
triangulation", International Journal of Computer and Information Sciences, Vol.
9, No. 3, pp. 219 - 242.

[121 De Floriani, L. 1987 "Surface representations based on triangular grids", Visual
Computer, Vol. 3, No. 1, pp. 27 - 50.

172

www.manaraa.com

References

[131 Woo, T. C. 1985 "A combinational analysis of boundary data structure

schemata", IEEE Computer Graphics and Applications, Vol. 5, No. 3, pp. 19 -
27.

[14] Watson, D. F. 1981 "Computing the n-dimensional Delaunay tessellation with

application to Voronoi polytopes", The Computer Journal, Vol. 24, pp. 167 - 171.

[151 De Floriani, L. 1989 "A pyramidal data structure for triangle-based surface
description", IEEE Computer Graphics and Applications, March 1989, pp. 67 -
78.

[161 Larkin, B. J. 1991 "An ANSI C program to determine in expected linear time the

vertices of the convex hull of a set of planar points", Computers and
Geosciences, Vol. 17, No. 3, pp. 431 - 443.

[171 Devijver, P. A. and Maybank, S. 1982 "Computation of the Delaunay

triangulation of a convex polygon with a minimum space complexity constraint",
Proceedings of the 6th International Conference on Pattern Recognition, Munich

(Germany), pp. 420 - 422.

[181 Christiansen, A. 1987 "Fitting a triangulation to contour lines", Proceedings of
Auto-Carto 8, Baltimore (USA), March 1987, pp. 57 - 67.

[191 Chew, L. P. 1987 "Constrained Delaunay triangulation", Proceedings of the 3rd

ACM Symposium on Computational Geometry, June 1987, pp. 216 - 222.

[201 Wang, C. A. and Schubert, L. 1987 "An optimal algorithm for constructing the

Delaunay triangulation of a set of line segments", Proceedings of the 3rd ACM

Symposium on Computational Geometry, June 1987, pp. 223 - 232.

[21] Heller, M. 1990 "Triangulation algorithms for adaptive terrain modelling",
Proceedings of the 4th International Symposium on Spatial Data Handling, Zurich

(Switzerland), Vol. 1, pp. 163 - 174.

[221 De Floriani, L. and Puppo, E. 1988 "Constrained Delaunay triangulation for

multiresolution surface description", IEEE Computer Society Reprint (reprinted

from Proceedings of the 9th IEEE International Conference on Pattern Recognition,
November 1988).

[231 Samet, H. 1989, The Design and Analysis of Spatial Data Structures (book),
Addison-Wesley publishing company.

173

www.manaraa.com

References

[241 Samet, H. 1989, Applications of Spatial Data Structures (book), Addison-
Wesley publishing company.

[251 Faloutsos, C., Sellis, T. and Roussopoulos, N. 1987 "Analysis of object oriented

spatial access methods", Proceedings of the SIGMOD Conference, May 1987,
San Francisco (USA), pp. 426 - 439.

[26] Smith, T. R. and Gao, P. 1990 "Experimental performance evaluations on spatial

access methods", Proceedings of the 4th International Symposium on Spatial

Data Handling, Zurich (Switzerland), Vol. 2, pp. 991 - 1002.

[27] Bentley, J. L. and Friedman, J. H. 1979 "Data structures for range searching",
ACM Computing Surveys, Vol. 11, No. 4, pp. 397 - 409.

[281 Franklin, W. R. and Akman, V. 1988 "An adaptive grid for polyhedral visibility
in object space: an implementation", Computer Journal, Vol. 31, No. 1, pp. 56 -
60.

1291 Klinger, A. 1971 "Patterns and search statistics", Optimising Methods in
Statistics (book), Academic Press (New York) publishers, pp. 303 - 307.

[301 Samet, H. 1984 "The quadtree and related hierarchical data structures", ACM
Computing Surveys, Vol. 16, No. 2, pp. 187 - 260.

[311 Klinger, A. and Dyer, C. R. 1976 "Experiments in picture representation using

regular decomposition", Computer Graphics and Image Processing, Vol. 5, No. 1,

pp. 68 - 105.

[321 Schneier, M. 1981 "Two hierarchical linear feature representations: edge
pyramids and edge quadtrees", Computer Graphics and Image Processing, Vol.
17, No. 3, pp. 211 - 224.

[331 Martin, J. J. 1982 "Organisation of geographical data with quadtrees and least

square approximation", Proceedings of the IEEE Conference on Pattern
Recognition and Image Processing, June 1982, pp. 458 - 463.

[341 Samet, H. and Webber, R. E. 1985 "Storing a collection of polygons using
quadtrees", ACM Transactions on Graphics, Vol. 4, No. 3, pp. 182 - 222.

[35] Nelson, R. C. and Samet, H. 1986 "A consistent hierarchical representation of
vector data", Computer Graphics, Vol. 20, No. 4, pp. 197 - 206.

174

www.manaraa.com

References

[361 Gargantini, I. 1982 "An effective way to represent quadtrees", Communications

of the ACM, Vol. 25, No. 12, pp. 905 - 910.

[37] Diaz, B. and Bell, S. B. M. (editors) 1986, Spatial Data Processing Using Tesseral
Methods (Natural Environmental Research Council, UK).

[38] Morton, G. M. 1966 "A computer oriented geodetic database and a new
technique in file sequencing", IBM Ltd, Ottawa (Canada).

139] Guttman, A. 1984 "R-trees: a dynamic index structure for spatial searching",
Proceedings of the SIGMOD Conference, June 1984, pp. 47 - 57.

[401 Comer, D. 1979 "The ubiquitous B-tree", ACM Computing Surveys, Vol. 11, No.
2, pp. 121-137.

[41] Stonebraker, M., Sellis, T. and Hanson, E. 1986 "An analysis of rule indexing

implementations in database systems", Proceedings of 1st International
Conference on Expert Database Systems, Charleston (USA), pp. 353 - 364.

[42] Nievergelt, J., Hinterberger, H. and Sevcik, K. C. 1984 "The grid file: an
adaptable, symmetric multikey file structure", ACM Transactions on Database
Systems, Vol. 9, No. 1, pp. 38 - 71.

[431 Monmonier, M. S. 1982, Computer-assisted cartography: principles and
prospects (book), Prentice-Hall publishers, New Jersey (USA).

[441 Brassel, K. E. and Weibel, R. 1988 "A review and conceptual framework of
automated map generalisation", International Journal of Geographic Information
Systems, Vol. 2, No. 3, pp. 229 - 244.

[45] Beard, K. M. 1991 "Theory of the cartographic line revisited: implications for
automated generalisation", Cartographica, Vol. 18, No. 4, pp. 32 - 58.

[461 Buttenfield, B. P. and McMaster, R. B. 1991, Map generalisation: making rules
for knowledge representation (book), Longman (UK) publishers.

[471 Muller, J. and Wang, Z. 1993 "Area patch generalisation: a competitive
approach", The Cartographic Journal, Vol. 29, No. 3, pp. 137 -144.

175

www.manaraa.com

References

[481 Bundy, G. LI., Jones, C. B. and Furse, E. "Holistic generalisation of large scale
cartographic data", European Science Foundation Scientific Programme on
Geographical Information Systems Data Integration and Database Design
(Specialist Meeting on Generalisation), Compeiegne (France), December 1993.
Proceeding to be published in 1994.

[491 McMaster, R. B. 1983 "A mathematical evaluation of simplification algorithms",
Proceedings of AutoCarto 6, Vol. 2, pp. 267 - 276.

[501 McMaster, R. B. 1987 "Automated line generalisation", Cartographica, Vol. 24,
No. 2, pp. 74 -111.

[51] Zoraster, S., Davis, D. and Hugus, M. 1984 "Manual and automated line

generalisation and feature displacement - appendices", Engineering Topographic

Laboratories, Fort Belvoir, Virginia (USA), June 1984.

[521 Abraham, I. M. 1988 "Automated cartographic line generalisation and scale-
independent databases", Ph. D Thesis, Department of Computer Studies, The
University of Glamorgan (UK).

[53] Tobler, W. R. 1964 "An experiment in the computer generalisation of maps",
Technical Report, Department of Geography, The University of Michigan (USA).

[54] Harris, K. M. 1981 "Algorithms for line simplification and smoothing and their
applicability to geographical data", Research Paper, University of Kansas
(USA), January 1981.

[55] Douglas, D. H. and Peucker, T. A. 1973 "Algorithms for the reduction of the
number of points required to represent a digitised line or its caricature",
Canadian Cartographer, Vol. 10, No. 2, pp. 112 - 122.

1561 Harris, K. M. 1981 "Use of the Douglas-Peucker line generalisation algorithm for

characteristic point selection", Research Paper, Geography 980, University of
Kansas (USA), May 1981.

1571 Jones, C. B. 1984 "A tree data structure for cartographic line generalisation",
Proceedings of Eurocarto 3, Graz (Austria).

[5s1 Jones, C. B. and Abraham, I. M. 1986 "Design considerations for a scale-
independent cartographic database", Proceedings of the 2^d International
Symposium on Spatial Data Handling, Seattle (USA), pp. 384 - 398.

176

www.manaraa.com

References

[59] Jones, C. B. and Abraham, I. M. 1987 "Line generalisation in a global
cartographic database", Cartographica, Vol. 24, No. 3, pp. 32 - 45.

[60] Ballard, D. H. 1981 "Strip trees: a hierarchical representation for curves",
Communications of the ACM, Vol. 24, pp. 310 - 398.

[61] van Oosterom, P. and van den Boss, J. 1989 "An object-oriented approach to

the design of geographic information systems", Proceedings of the 16t Symposium

of Large Spatial Databases", July 1989, pp. 255 - 269.

[621 van Oosterom, P. 1990 "Reactive data structures for geographic information

systems", Ph. D Thesis, Department of Computer Science, Lieden University

(Netherlands).

[631 Schmitt, F. J. M. and Gholzadeh, B. 1985 "Adaptive polyhedral approximation
of digitised surfaces", Proceedings of SPIE - Computer Vision for Robots 595,

Cannes (France), December 1985, pp. 101 -108.

1641 Chen, Z. T. and Tobler, W. R. 1986 "Quadtree representations of digital terrain",
Proceedings of AutoCarto London, Vol. 1, pp. 475 - 484.

[651 De Floriani, L. et al 1984 "A hierarchical structure for surface approximation",
Computer Graphics, Vol. 8, pp. 183 - 193.

[66] Gomez, D. and Guzman, A. 1979 "Digital model for three-dimensional surface
representation", Geo-Processing, Vol. 1, pp. 53 - 70.

[671 Barrera, R. and Vazques, A. M. 1984 "A hierarchical method for representing
relief", Proceedings of Pecora 9 Symposium on Spatial Information Technologies
for Remote Sensing Today and Tomorrow, South Dakota (USA), pp. 87 - 92.

[681 Scarlatos, L. and Pavlidis, T. 1991 "Adaptive hierarchical triangulation",
Proceedings of AutoCarto 10, pp. 234 - 246.

1691 Kraak, M. J. and Gazdzicki, J. 1991 "Triangulation based modelling of spatial
objects in relation to the terrain surface", Proceedings of the 2"d European
Conference on Geographical Information Systems, Brussels (Belgium), pp. 564 -
572.

177

www.manaraa.com

References

[701 McCullagh, M. J. and Ross, C. G. 1980 "Delaunay triangulation of a random
data set for isarithmic mapping", The Cartographic Journal, Vol. 17, pp. 93 - 99.

[711 Franklin, W. R. 1983 "Adaptive grids for geometric operations", Proceedings of
Auto-Carto 6, pp. 230 - 239.

[72] Abel, D. J. and Smith, J. L. 1983 "A data structure and algorithm based on a
linear key for rectangular retrieval", Computer Vision, Graphics and Image

Processing, Vol. 2, No. 24, pp. 1- 13.

[731 van Oosterom, P. 1991 "The Reactive-tree -a storage structure for a seamless,

scaleless geographic database", Proceedings of Auto-Carto 10, Baltimore (USA),

pp. 393 - 407.

[741 Becker, B., Six, H. W. and Widmayer, P. 1991 "Spatial priority search: an access
technique for scaleless maps", Proceedings of SIGMOD 1991, pp. 128 -137.

[751 Hutflesz, A., Six, H. W. and Widmayer, P. 1990 "The R-file: an efficient access

structure for proximity queries", Proceedings of the IEEE 6th International
Conference on Data Engineering, pp. 372 - 379.

[761 Visvalingam, M. and Whyatt, J. 1990 "The Douglas-Peucker algorithm for line

simplification: reevaluation through visualisation", Computer Graphics Forum,
Vol. 9, No. 3, pp. 213 - 228.

[771 Li, Z. and Openshaw, S. 1993 "A natural principle for the objective

generalisation of digital maps", Cartography and Geographic Information

Systems, Vol. 20, No. 1, pp. 19 - 29.

[78] Li, Z. 1993 "Some observations on the ' issue of line generalisation", The

Cartographic Journal, June 1991, pp. 68 - 71.

[791 Wang, Z. and Muller, J. 1993 "Complex coastline generalisation", Cartography

and Geographic Information Systems, Vol. 20, No. 2, pp. 96 - 106.

[80] Monmonier, M. 1986 "Towards a practical model of cartographic

generalisation", Proceedings of Auto-Carto London, pp. 257 - 266.

[811 Thapa, K. 1988 "Automated line generalisation using zero crossings",
Photogrammetric Engineering and Remote Sensing, Vol. 54, No. 4, pp. 511 - 517.

178

www.manaraa.com

References

[821 Schwarz, C. R. 1991 "Comment and discussion: the removal of spatial conflicts
in line generalisation", Cartography and Geographic Information Systems, Vol.
18, No. 4.

[831 Muller, J. 1990 "The removal of spatial conflicts in line generalisation",
Cartography and Geographic Information Systems, Vol. 17, No. 2, pp. 141 - 149.

[84] Dutton, G. H. 1981 "Fractal enhancement of cartographic line detail", American
Cartographer, Vol. 8, No. 1, pp. 23 - 40.

[851 Ware, J. M. and Jones, C. B. 1992 "A multiresolution topographic surface
database", International Journal of Geographical Information Systems, Vol. 6,
No. 6, pp. 479 - 496.

[86] Kidner, D. B. and Jones, C. B. 1991 "Implicit triangulations for large terrain
databases", Proceedings of the 2nd European Conference on Geographical

Information Systems, Vo1.1, Brussels (Belgium), pp. 537 - 546.

[871 Kidner, D. B. 1991 "Digital terrain models for radio path loss calculations",
Ph. D Thesis, Department of Computer Studies, The University of Glamorgan
(UK).

[881 Jones, C. B., Kidner, D. B. and Ware, J. M. 1994 "The Implicit TIN and multi-
scale spatial databases", The Computer Journal, Vol. 37, No. 1, pp. 43 - 57.

[891 El Gindy, H. 1990 "Optimal parallel algorithms for updating planar
triangulations", Proceedings of the 4th International Symposium on Spatial Data
Handling, Vol. 1, pp. 200 - 208.

[9p] Ware, J. A. and Kidner, D. B. 1991 "Parallel implementation of the Delaunay

triangulation within a transputer environment", Proceedings of the 2^d European
Conference on Geographical Information Systems, Vol. 2, Brussels (Belgium), pp.
1199-1208.

[911 Jones, C. B. (1989) "Data structures for three-dimensional spatial information

systems in geology", International Journal of Geographic Information Systems,
Vo1.3, No. 1, pp. 15 - 31.

[921 Raper, J. F. (1989) "The three-dimensional geoscientific mapping and modelling
system: a conceptual design", Three-Dimensional Applications in Geographic
Information Systems (book), Taylor and Francis publishers, pp 11 - 19.

179

www.manaraa.com

References

[93] Youngmann, C. (1989) "Spatial data structures for modelling subsurface
features", Three-Dimensional Applications in Geographic Information Systems

(book), Taylor and Francis publishers, pp. 129 -136.

[941 Loudon, T. V. (1986) "Digital spatial models and geological maps", Proceedings

of Auto-Carto London, Vol. 2, pp. 60 - 65.

[95] Lee, M. K. et al (1990) "Three-dimensional integrated geoscience mapping

progress report number 1", British Geological Survey Project E77HAR12, Note

90/17.

[961 Bak, P. R. G. and Mill, A. J. B. (1989) "Three-dimensional representation in a

geoscientific resource management system for the minerals industry", Three-

Dimensional Applications in Geographic Information Systems (book), Taylor and
Francis publishers.

[971 Rhind, D. W. (1989) "Spatial data handling in the geosciences", Three-

Dimensional Modeling with Geoscientific Information Systems (book), Kluwer

Academic publishers, pp. 13 - 27.

[981 Kelk, B. (1989) "Three-dimensional modelling with geoscientific information

systems: the problem", Three-Dimensional Modelling with Geoscientific

Information Systems (book), Kluwer Academic publishers, pp. 29 - 37.

[991 Dabek, Z. K. et al (1988) "Development of advanced interactive computer

modelling techniques for multicomponent three-dimensional interpretation of

geophysical data", British Geological Survey Technical Report WK/88/2.

[100] Unger, J. D. et al (1989) "Creating a three-dimensional transect of the Earth's

crust from craton to ocean basin across the N. Appalachian Orogen", Three-

Dimensional Applications in Geographic Information Systems (book), Taylor and
Francis publishers, pp. 137 -148.

[loll Requicha, A. A. G. (1980) "Representations for rigid solids: theory, methods and
systems", ACM Computing Surveys, Vol. 12, pp. 437.

[1021 Jones, T. A. (1988) "Modelling geology in three-dimensions", Geobyte, February

1988, pp. 14 - 20.

w

180

www.manaraa.com

References

[1031 Carlbom, I. and Chakravatry, I. 1985 "A hierarchical data structure for

representing the spatial decomposition of three-dimensional objects", IEEE

Computer Graphics and Applications, April 1985, pp. 24 - 31.

[1041 Carlson, E. 1987 "Three-dimensional conceptual modelling of subsurface
structures", Technical Papers of the ASPRS-ACSM Annual Convention, Vol. 4,

Baltimore (USA).

[105] Burns, K. L. 1988 "Lithologic topology and structural vector fields applied to

subsurface prediction in geology", GIS/LIS 1988 (ACM-ASPRS), San Antonio

(USA).

[1061 Smith, D. R. and Paradis, A. R. 1989 "Three-dimensional GIS for the earth
sciences", Three-Dimensional Applications in Geographic Information Systems
(book), Taylor and Francis publishers, pp. 149 -154.

[1071 Schek, H. J. and Waterfeld, W. 1986 "A database kernal system for geoscientific
applications", Proceedings of the Second International Symposium on Spatial

Data Handling, Seattle (USA), pp. 273 - 288.

[1081 Kavouras, M. and Masry, S. E. 1987 "An information system for geosciences :
design considerations", Proceedings of Auto-Carto 8, Baltimore (USA), March

1987, pp. 336 - 345.

[1091 Navazo, I., Ayala, D. and Brunet, P. 1986 "A geometric modeller based on the

exact octree representation of polyhedra", Computer Graphics Forum, Vol. 5, pp.
91 - 104.

[110] Gargantini, I. 1982 "Linear octrees for fast processing of three-dimensional
objects", Computer Graphics and Image Processing, Vol. 20, pp. 365 - 374.

[111] Gargantini, I., Walsh, T. R. and Wu, O. L. 1986 "Viewing transformations of
voxel-based objects via linear octrees", IEEE Computer Graphics and
Applications, October 1986, pp. 12 - 21.

[1121 Ayala, D. et al 1985 "Object representation by means of non-minimal division

quadtrees and octrees", ACM Transactions on Graphics, Vol. 4, No. 1, pp. 41 -
59.

[113] Boissonnat, J-D. 1984 "Geometric structures for three-dimensional shape
recognition", ACM Transactions on Graphics, Vol. 3, No. 4, pp 266 - 286.

181

www.manaraa.com

References

[1141 Fisher, T. and Wales, R. Q. 1991 "Three-dimensional solid modelling of geo-
objects using non-uniform rational B-splines (NURBS)", Three-Dimensional
Modelling with Geoscientific Information Systems (book), Kluwer Academic

publishers, pp. 85 -105.

[1151 Mallet, J-L. 1991 "GOCAD :a computer aided design program for geological

applications", Three-Dimensional Modelling with Geoscientific Information
Systems (book), Kluwer Academic publishers, pp. 123 -141.

[1161 Christiansen, H. N. and Sederberg, T. W. 1978 "Conversion of complex contour
line definitions into polygonal element mosaics", ACM Computer Graphics, Vol.
12, No. 3, pp. 187 - 192.

[1171 Riedinger, R. et al 1988 "About the the Delaunay-Voronoi tessellation", Journal

of Computational Physics, Vol. 74, pp. 61 - 72.

[1181 Tanemura, M., Ogawa, T. and Ogita, N. 1983 "A new algorithm for three-
dimensional Voronoi tessellation", journal of Computational Physics, Vol. 51,

pp. 191 - 207.

[119] Devijver, P. A. and Dekesel, M. 1983 "Computing multi-dimensional Delaunay
tessellations", Pattern Recognition Letters 1, July 1983, pp. 311 - 316.

[1201 Bundy, G. LI., Jones, C. B. and Furse, E. 1994 "A topological structure for the

generalisation of large scale cartographic data", to be presented at Geographical

Information Systems Research UK (GISRUK) 2^d National Conference.

[1211 Jones, C. B., Ware, J. M. and Bundy, G. Ll. 1992 "Multi-scale spatial modelling
with triangulated surfaces", Proceedings of the 5th International Symposium on
Spatial Data Handling, Charleston (USA), Vol. 2, pp. 612 - 621.

[1221 Jones, C. B. 1991 "Database architecture for multi-scale Geographical
Information Systems", Proceedings of Auto-Carto 10, Baltimore (USA), pp. 1-
14.

[1231 Topfer, F. and Pillewizer, W. 1966 "The principles of selection", Cartographic
Journal, Vol. 3, pp. 10 - 16.

[1241 Morris, K. 1991 "Using knowledge-base rules to map the three-dimensional

nature of geological features", Photogrammetric Engineering and Remote Sensing,
Vol. 57, No. 9, pp. 1209 - 1216.

182

www.manaraa.com

References

[1251 Fisher, P. F. (guest editor) 1990 "Artificial intelligence applications in

geoscience", Computers and Geosciences (Special Issue), Vol. 16, No. 6.

[126] Walsh, J. J. and Watterson, J. 1988 "Dips of normal faults in British coal

measures and other sedimentary sequences", journal of the Geological Society
(London), Vol. 145, pp. 859 - 873.

[1271 Walsh, J. J. and Watterson, J. 1990 "New methods of fault projection for

coalmine planning", Proceedings of the Yorkshire Geological Society, Vol. 48, pp.
209 - 219.

i

w

183

www.manaraa.com

Appendix 1

Line Generalisation and
Spatial Conflict

www.manaraa.com

Appendix 1 Line Generalisation and Spatial Conflict

A1.1 The Introduction of Spatial Conflict as a Result of Line Generalisation.

A problem common to many generalisation operations is that of a loss of topological
integrity as a result of performing the operation. The Douglas-Peucker algorithm is not
immune to this problem, particularly when a large reduction in the number of points is

involved.

A common error which causes spatial conflict is that of self-crossing, where a line is

forced to intersect itself as a result of removing one or more of its points (Figure A1.1).
A more unusual error is when two portions of the same line become co-incident (Figure

A1.2).

2 2
0

5 zlý 33

4

Figure AM - Self-crossing as a result of generalisation.

3

1

0

2 03
4104 /705

8

Figure A1.2 - Co-incidence as a result of generalisation.

When dealing with collections of lines there is also the risk of introducing invalid
intersection of neighbouring lines (Figure A1.3) or neighbouring lines becoming

co-incident (Figure A1.4). These errors are termed neighbour intersection and neighbour
co-incidence errors respectively. If the lines being generalised represent a collection of
polygons, neighbour intersection can result in overlapping polygons (Figure A1.5), while
neighbour co-incidence can result in flat polygons (Figure A1.6).

Note that in this thesis generalisation is considered in a purely geometrical sense. No

attempt at an automated solution to the more conceptual aspects of generalisation,
such as feature selection, exaggeration, displacement and symbolisation, is being put
forward. However, conceptual errors can occur as a result of applying the
Douglas-Peucker algorithm.

Al-2

www.manaraa.com

Appendix 1 Line Generalisation and Spatial Conflict

it it

1

14

Figure A1.3 - Neighbouring lines intersecting following simplification.

4
1

23

10 12

11

1

2 3
10 12

0
11

Figure AL4 - Neighbouring lines becoming co-incident.

I

4

10

1

14

10

2
66

Figure A1.5 - Overlapping polygons.

1

2

3

1
11 oll

20

°10

3

Figure A1.6 -A flat polygon.

2

1'

One such example is that of introducing spikes. Such an error occurs when a line point

nearly, but not quite, interferes with another line point or part of the same or other line,

as a result of the generalisation (Figure A1.7). With such an error, the topological

integrity of the line is maintained, but the resulting line will be visually displeasing.

Muller [83] has produced an elegant solution to this particular problem. It will not be

Al-3

4

www.manaraa.com

Appendix 1 Line Generalisation and Spatial Conflict

addressed further here, particularly in view of the fact that the concern of this work is

solely the topological integrity of lines and polygons.

153

64

2 spike
o

1i3

64

Figure A1.7 -A spike introduced as the result of simplification.

A1.2 Detecting Spatial Conflict.

Errors of the type previously described occur either as a result of two or more line

segments intersecting each other or two or more line segments becoming co-incident.
Detecting error is therefore equivalent to detecting either or both of these occurrences. It

is assumed that the source data is clean, that is, it contains no intersecting or

co-incident line segments.

A line can be checked for self-crossing by testing each of its constituent line segments,
in turn, for intersection with any other of its constituent line segments. In similar
fashion, a line with co-incident line segments can be detected by testing each of its line

segments, in turn, for co-incidence with any other of its line segments. The detection of
intersection or co-incidence of neighbouring lines can be carried out in a similar manner,

checking the line segments of each line against all line segments of every neighbouring
line. If no spatial indexing is employed, it is necessary to check each line segment of

every line against each line segment of every other line, since each line must be regarded

as the neighbour of every other line. This can lead to unsatisfactory processing times,

even for relatively small data sets. However, if a spatial index is used, the number of

neighbours per line, and hence the number of intersection and co-incidence tests

needing to be performed, can be greatly reduced. This can be brought about by defining

a spatial window based on the line segment currently being processed. It now follows

that only those lines which intersect this window need be regarded as neighbours of the
line segment.

A1.3 Re-establishing Topological Integrity.

It has been shown that the removal of points from a line or collection of lines can result
in a loss of topological integrity. Methods have also been described for detecting such

errors. There now follows a discussion as to how these errors can be resolved.

In each of the types of error described, the error has occurred as a result of removing

Al-4

www.manaraa.com

Appendix 1 Line Generalisation and Spatial Conflict

one or more points from the original line or lines. The error correction technique

adopted here is therefore to replace one or more of the discarded points back into its

original line, in such a way as to restore topological integrity. An alternative approach
would be to retain only those points selected by the Douglas Peucker algorithm, but

distorting the x and y coordinates of certain of these points in a fashion such as to

result in a topologically correct data set. Muller [83] uses a method similar to this. The

former method is more applicable to this work as it is important to retain consistency
between the levels of the multi-scale database.

4
304 5 20 0h9

Figure A1.8 - Generalisation has resulted in self-crossing.

The self-crossing scenario will be dealt with first, and in detail. The other three

situations can each be dealt with in a similar way to this. The situation is that a line L,

consisting say of n points and (n-1) line segments, has been generalised, resulting in a
generalised line L9 consisting of (n-m) points and (n-m-1) line segments (Figure A1.8).
Each of the (n-m-1) line segments, defined (a, b), may, or may not, have discarded

points associated with it. For each segment, the associated discarded points, D, will be

those points which lie between the endpoints, a and b, in the original line description. It
is found that two of the line segments, Sl and S2, of the generalised line intersect each
other, resulting in a loss of topological integrity. A method for resolving this situation is
therefore needed.

0

Al-5

www.manaraa.com

Appendix 1

3p
p p5 1)

1

(a)

Line Generalisation and Spatial Conflict

1

(b)

-4

1

(c)

1

(d)

Figure A1.9 - Restoring spatial integrity by arbitrarily choosing points for

reinsertion. (a) Self-crossing after simplification. (b) Point 2 added between point 1 and

point 6, does not resolve spatial conflict. (c) Point 10 added between point 9 and point 11,

does not resolve spatial conflict. (d) Point 4 added between point 2 and point 6, spatial
integrity restored.

The simplest approach is to reintroduce all discarded points, D, 1 and D`2, resulting in a

number of new, non-intersecting line segments. A second approach could be to

reintroduce a single point, chosen arbitrarily from Ds1 or Ds2, thus replacing one of the

original line segments with two new segments, S3 and S4, each with their own list of

associated points. S3 and S4 are now each checked in turn for intersection with the

remaining original line segment. If an intersection is found, the process of choosing and
inserting a point is repeated and continues in a recursive manner until no intersection is

found (Figure A1.9). This is the approach adopted in the line generalisation algorithms

used in this thesis.

Note that any new line segments introduced as a result of applying either of these

processes may intersect other line segments of Lg, other than those derived from S1 and
S21 and will have to be checked accordingly. This process of introducing new error into

the line representation is referred to as error propagation.

Al-6

3Ö
ý5

4
30
..., 5

www.manaraa.com

Appendix 1 Line Generalisation and Spatial Conflict

304
20 0A905

02

1615 3
110 10 70

12 6
4

20
863

10

7° o
95

4

1

4

9

5
08

Figure A1.10 -A selection of hand generated occurrences of self-crossing.

Each of these methods will solve the problem of spatial conflict, but would seem to be

far from optimal with regards the number of discarded points which are reintroduced.
A more sensible approach could be to modify the second method, by applying certain

criteria to govern the selection of the point that is reintroduced at each stage. This

might result in restoring the spatial integrity of the line with fewer points having to be

reintroduced. There now follows a number of suggestions as to how a point might be

selected for reinsertion. These suggestions have not as yet been tested.

One obvious criteria would be to reintroduce that point with the greatest scale

significance (as decided upon by the Douglas Peucker algorithm). An exhaustive
technique would be to predict the effect of reintroducing each of the points. This could
be achieved by temporarily reinserting each point, in turn, into the line, assessing its

effect, then removing it. The point which gives the best result can then permanently

reinserted. The result of inserting a point is quantified in terms of whether or not it

solves the problem of intersection, the points significance in describing the line and the

number of propagation errors introduced as a result. This approachT would appear to

Al-7

www.manaraa.com

" Appendix 1 Line Generalisation and Spatial Conflict

be very efficient in terms of number of points reinserted, but might suffer in being time

consuming.

3
4

2
3

2
63

80

70
95

4

4

8

Figure A1.11- Spatial integrity restored in each case by guessing at the best point to
insert.

A compromise might be reached by introducing a rule by which the best point to

reinsert can be guessed at. From studying a number of hand generated situations (Figure
A1.10), it is noticed that in most cases when two line segments intersect, one of these

segments, S, will also intersect at least one other segment. It would appear that the best

approach to reinserting points would be to reinsert a point into the line segment S first.

It also follows that this point will be the point from Ds with greatest scale significance.
If both line segments intersect no other segment, a point is chosen purely according to

scale significance. In practise, each line segment may intersect any number of line

segments. The policy adopted is to reintroduce a point to that segment which intersects

most other line segments. If each line segment intersects the same number of other line

segments, the point is chosen according to scale significance. This method is illustrated

in Figure A1.11.

Al-8

www.manaraa.com

Appendix 1 Line Generalisation and Spatial Conflict

This technique can easily be adapted to cater for the solution of self-coincidence,
overlapping polygons and flat polygons. A single algorithm,
RESTORE_SPATIAL_INTEGRITY, is presented in Figure A1.12. The algorithm
describes a process by which a set of line data (whether the lines represent polygons or

not does not matter) is examined for spatial conflict and has its spatial integrity

restored whenever a conflict is found to have occurred.

Al-9

www.manaraa.com

Appendix 1 Line Generalisation and Spatial Conflict

Procedure RESTORE-SPATIAL-INTEGRITY

For each line Li
Get neighbours.
For each neighbour L2

Put all line segments of Ll onto EDGE STACK_l.
Put all line segments of L2 onto EDGE_STACK_2.
Do while EDGE-STACK-1 not empty

Take line segment El (A1, A2) from top of EDGE_STACK_1.
Do while EDGE_STACK_2 not empty

Take line segment E2 (B1, B2) from top of EDGE-STACK-2.
If (El * E2), then

If (edges_intersect(E1, E2) or (edges_coincident(E1, E2)), then
Calculate Il, the number of edges of L2 intersected by or
coincident with El.
Calculate 12, the number of edges of Ll intersected by or
coincident with E2.
If (Il > 12), then

Get D1, the currently unused point with greatest
significance.
Replace edge El in Ll with edges N1(A1, D1) and N2
(D2, A2).

Else
If (12 > I1), then

Get D2, the currently unused point with greatest
significance.
Replace edge E2 in L2 with edges N1(B1, D2) and N2
(D2, B2).

Else
Get D1.
Get D2.
If (distance D1 > distance D2), then

Replace edge El in Ll with edges N1 (A1, D1) and
N2 (D1, A2).

Else
Replace edge E2 in L2 with edges Ni (B1, D2) and
N2 (D2, B2).

Endif.
Endif.

Endif.
Endif.

Endif.
Endwhile.

Endwhile.
Endfor.

Endfor.

Endprocedure.

Figure A. 12 -A procedure to restore spatial integrity.

w

Al-10

www.manaraa.com

Appendix 2

Core Library Functions

This appendix does not list all the functions held in the core libraries. Those listed
here have been chosen because of their importance to database creation and query
processing.

w

www.manaraa.com

Appendix 2 Core Library Functions

A2.1 Data_Retrieval Library.
This library contains low-level read/write functions which interact directly with the
ORACLE or ISAM database. For each of the functions listed, which read data from the

database, there is a corresponding write function in the actual implementation.

function get_values (point_id, level used, x_value, y value, z_value)
Returns a record from the Oracle Point Table (or ISAM Point File) for a
given point_id.

function get-line-record (line_id, level, point ids, seq_nos)
Returns a record from the appropriate Line Feature Table for a given
(line_id, level) pair.

function get-polygon-record (polygon-id, line ids)
Returns a record form the Polygon Table for a given polygon_id.

function get object_record (object-id, object desc, class ids, point_ids,
line_ids, polygon-ids)
Returns a record from the Object Table for a given object_id.

function get_triangle_record (tri_id, level, geom id)
Returns a record from the appropriate Triangle Table for a given (tri_id,
level) pair.

function get_internal_record (geom_id, level, verb id, vert2_id,
vert3_id, adjacentl_id, adjacent2_id, adjacent3 id)
Returns a record from the appropriate Internal Table for a given (geom_id,
level) pair.

function get_boundary_record (geom_id, level, adjacentl id,

adjacent2_id, adjacent3 id)
Returns a record from the appropriate Boundary Table for a given
(geom_id, level) pair.

function get-info-details (object_grid_x, object-grid-y, triangle_grid_x,
triangle_grid_y, lateral error, vertical_error)
Returns details from the Information Table.

function get-triangle-grid-record (x coord, y_coord, level, triangle ids)
Returns a record from the appropriate Triangle Grid Table for agiven
coordinate pair and level.

A2-2

www.manaraa.com

Appendix 2 Core Library Functions

function get-object-grid-record (x_coord, y_coord, level, object ids)
Returns a record from the appropriate Object Grid Table for a given
coordinate pair and level.

A2.2 Data_Transfer Library.
This library contains high-level read/wite functions which interact with the
Data_Retrieval library.

funtion get_triangle_details (tri_id, level, vi, v2, v3, a1, a2, a3)
Returns the geometry and adjaceny information for a given tri_id at a
specified level of detail.

function get_line_details (line_id, level, point_ids)
Returns a list of point ids which reference the points that define a line at a
particular level of detail.

function get objects (x1, yl, x2, y2, level, object list)
Returns a list of object_ids which reference all objects that intersect a query
window (a rectangle defined by x1, yl, x2, y2) at a specified level of
detail.

function get triangles (xl, yl, x2, y2, level, triangle_list)
Returns a list of triangle-ids which reference all triangles that intersect a
query window (a rectangle defined by x1, yl, x2, y2) at a specified level of
detail.

A2.3 Geometry_Library.

This library contains the geometrical routines used during database creation and query
processing.

function point-in-triangle (point-id, tri_id, flag)
Sets flag to 0 if point outside triangle, 1 if point is inside triangle, 2 if point
lies on an edge of triangle or 3 if point coincides with a triangle vertex.

function point_in_polygon (point-id, polygon-id, flag)
Sets flag to 0 if point outside polygon, 1 if point is inside polygon, 2 if
point lies on an edge of polygon or 3 if point coincides with a polygon
vertex.

w

A2-3

www.manaraa.com

Appendix 2 Core Library Functions

function line_segment_intersect (x1, y1, x2, y2, x3, y3, x4, y4, flag, x, y)
Tests if line segment (xl, yl), (x2, y2) intersects line segment (x3, y3), (x4,

y4). Flag set to 1 if segments intersect, 0 otherwise. Also returns (x, y)
value of point of intersection (when appropriate).

function calculate_centroid (tri_id, x, y)
Calculate the centroid of a triangle.

function calculate_circumcentre (tri_id, x, y)
Calculate the circumcentre of a triangle.

A2.4 Triangulation Library.
This library contains a number of the basic functions required to perform a constrained
Delaunay triangulation of a set of points and constraining edges.

function calculate-convex-hull (point-ids, convex-hull)
Calulates the convex hull of a set of points.

function triangulate_convex_polygon (convex-polygon, triangle-ids)
Delaunay triangulates a convex polygon.

function triangulate-polygon (polygon, triangle-ids)
Delaunay triangulates a polygon.

function insert-point (point_id, triangle
-

ids)
Inserts a point into an existing triangulation.

function insert-edge (v1, v2, triangle-ids)

Inserts an edge (vl, v2) into an existing triangulation.

A2.5 Output Library.

This library contains a number of high-level computer graphics output primitives which
interact with UNIRAS (MTSD 1.0) or PHIGS (MTSD 2.0 and MGD).

function draw-object-empty (object id)
Draws an object.

function draw_object_shaded (object_id, colour)
Draws a shaded object.

w

A2-4

www.manaraa.com

Appendix 2 Core Library Functions

function draw.
-polygon-empty

(polygon-id)
Draws a polygon.

function draw-polygon-shaded (polygon-id, colour)
Draws a shaded polygon.

function draw_line(line_id)
Draws a line.

function plot_point (point_id)
Plots a point.

function draw_triangle_empty (triangle_id)
Draws a triangle.

function draw_triangle_shaded (triangle id, colour)
Draws a shaded triangle.

-01

A2-5

www.manaraa.com

Appendix 3

Published Papers

These papers make up the published work relating to the thesis. It should be noted
that the results in the thesis represent a more up to date account of the research
than the work presented in these papers. In the instance of any inconsistency
between the work documented in the papers and that documented in the thesis, the
thesis should be taken as being correct.

w

www.manaraa.com

Appendix 3 Published Papers

MULTISCALE SPATIAL MODELLING WITH
TRIANGULATED SURFACES

Christopher B. Jones, J. Mirk Ware and Geraint U. Bundy

Department of Computer Studies
The Polytechnic of Wales

Pontypridd
Mid Glamorgan, CF37 I DL, UK

email: cbjones@uk. ac. pow. genvax

Abstract

Triangulated surfaces provide a means of integrating linear and
polygonal features within topographic and geological models. The approach
is versatile in that it can be applied to planar 2D maps, terrain surfaces and
fully 3D geological models. Hierarchical triangulated data structures can
represent surfaces at multiple resolutions and can be combined with a
hierarchical representation of the point, line and polygon features that
constrain the triangulation. Triangulations can also be used to assist in the
detection and resolution of spatial conflicts resulting from generalisation
operators that involve enlargement and symbolisation.

Introduction

Despite the very widespread use of GIS technology, facilities for
automatically generating spatial models and maps at different scales remain
remarkably poor. Satisfactory execution of automatic scale change, and the
process of generalisation which it entails, depends partly upon the
incorporation within GIS of the human knowledge involved in
generalisation (Weibel, 1991). It also depends upon the development of
computer representations and computer techniques which can emulate the
visual processing which is implicit in the human knowledge concerned with
generalisation. This paper examines the use of triangulated surfaces,
primarily as it framework for building multiple scale topographic
databases, but also, more speculatively, as a representation which has
potential for assisting generalisation procedures which can benefit from a
continuous representation of the map space.

In the context of geographical information systems, the benefits of
triangulations for, representing terrain surfaces in the form of triangulated
irregular networks (TIN) hive= Iq lö been recognised (e. g. Peucker et al,
1978). In particular they preserve spatial data at their original locational
accuracy, unlike raster or grid models which often result in a loss of

A3-2

www.manaraa.com

Appendix 3 Published Papers

locational resolution. The structure of a triangulated surface can also be
used to represent local spatial relationships, through vertex, edge and
triangle adjacency data. Their broader potential for providing topologically
consistent representations of maps, in the form of cell graphs or simplicial
complexes has been discussed by Frank and Kuhn (1986). This latter view
of triangulations appears relevant to the solution of map generalisation
problems in that it is desirable to retain the topological integrity of map
data while applying simplification and symbolisation operators which are
liable to jeopardise it due to changes in shape and size of objects. An
example of a technique which uses triangulation explicitly to generalise
polygons, by generating their skeleton, has been described by
Chithambaram et al (1991). Frank and Kuhn drew attention to the value of
triangulations in representing linear features as chains of edges, in addition
to their conventional use in representing terrain defined by point
elevations. They also referred to the benefits of creating hierarchical
triangulations in which objects could be described at different levels of
aggregation of their components.

There have been several research efforts with the objective of creating
multiresolution hierarchical triangulations. Examples can be found in
Gomez and Guzman (1979). De Floriani (1989), De Floriani and Puppo
(1988), and Scarlatos and Pavlidis (1991). Hierarchical triangulated data
structures are particularly relevant to representing the aspects of
generalisation which involve gradual changes in spatial form. Provided the
changes can be predetermined and can be described by a progressive
reduction of the original geometric components, multiresolution
hierarchical data structures may provide efficient access to specified levels
of detail by traversing them to the appropriate depth.

The hierarchical triangulation schemes referred to can be applied to
terrain surfaces in which the level of detail is defined with respect to a
vertical error corresponding to the difference between a simplified surface
and the original detailed surface. Comparable schemes for multiresolution
representation of linear features have also been developed but the error
refers to lateral or horizontal distances. Examples are strip trees (Ballard,
1981) and the multiscale line tree (Jones and Abraham, 1986,1987).

The following sections of this paper are concerned with the
development of a multiresolution database which integrates a hierarchical
triangulation scheme based on the constrained Delaunay pyramid (De
Floriani and Puppo 1988, De Floriani 1989) with a hierarchical line
representation based on the multiscale line tree. We then discuss the issues
which arise in extending this topographic surface modelling scheme to a
multiresolution three dimensional geological model. Finally we consider
briefly how a two dimensional triangulation can be used to assist

A3-3

www.manaraa.com

Appendix 3 Published Papers

generalisation procedures involving object symbolisation and displacement.

A Multiresolution Topographic Surface Database

The objective in designing a multiresolution topographic surface
database was to provide a spatial model which combined point, linear and
areal topographic features with a terrain surface, in a manner which
enabled efficient retrieval of different scale representations. In particular it
was regarded as desirable to minimise duplication of data such that spatial
data common to different levels of detail were only stored once. In
combining ideas from the constrained Delaunay pyramid and the multiscale
line tree, the approach adopted here categorises vertices according to their
scale significance. The terrain surface and the topographic features
embedded within it are then represented at varying levels of detail by
describing triangulations and surface features in terms of references to the
component vertices, which are stored separately.

The Delaunay pyramid, in its original form, consists of a hierarchy of
triangulation definitions, each level of which contains progressively greater
detail. There are three types of triangle which can occur in a particular
level of triangulation - internal, boundary and external. An internal
triangle consists of references to three vertices and three adjacent triangles.
A boundary triangle consists of three references to adjacent triangles and a
reference to a previously defined, higher level, internal triangle (the
vertices of which are the same as those of the boundary triangle). An
external triangle simply consists of a reference to a previously defined,
higher level. internal triangle with which it is identical. Each triangle
within a level also references those triangles at the next more detailed
lower level which intersect it. This assists hierarchical spatial search within
a Delaunay pyramid to determine which triangle a given point lies inside.

The constrain ed Delauna)" pyramid (cdp) modifies the original data
structure by allowing, insertion of chains of edges belonging to surface
features. Retention of these edges within the triangulation as edges of
triangles results in local violation of the criteria for Delaunay triangulation.
In doing so. the surface more accurately models the real world surface by
ensuring that it conforms to known structural features. The possible failure
of Delaunay triangulation to model the real surface was one of the
motivations for the multiresolution scheme of Scarlatos and Pavlidis
(1991). The cdp differs from the latter however in ensuring that triangle
edges conform to specified structural features and in using Delaunay
criteria to model those parts of the surface for which no other structural
information is available.

In the Delaunay pyramid, vertices are allocated to successive levels of

A3-4

www.manaraa.com

Appendix 3 Published Papers

the hierarchy on the basis of their reduction in the elevation error at the
location of the vertex, with respect to the original fully defined surface.
Thus, starting at an approximation to the original surface, the vertically
most distant vertices are progressively inserted in the triangulation at that
level until a preset tolerance is reached, i. e. until no uninserted vertex is
further from the current surface approximation than the tolerance distance
for that level.

When constraining the surface with linear features, the vertical error
criterion for vertex insertion does not provide adequate control over the
degree of generalisation of linear features at a particular level, since it
takes no account of lateral variation in form. In practice, the inserted linear
feature vertices may have been derived from a two dimensional planar map
and could not therefore contribute to a reduction of surface error, since
their elevations were only obtained by interpolating them within the
original terrain surface. To ensure that linear features are represented at an
appropriate degree of generalisation at each level, it is necessary to
introduce the concept of lateral tolerance, which is a measure of the 2D
cartographic generalisation of these features. In the line generalisation tree
(Jones 1984, Jones and Abraham 1986) and its spatially indexed variant, the
multiscale line tree, linear feature vertices are classified according to shape
significance by means of the Douglas and Peucker (1973) algorithm. This
uses a tolerance value based on the laterally perpendicutar distance of
vertices from an approximating line passing through a subset of the
original vertices.

In our modification of the cdp, the Multiresolution Topographic
Surface Database (MTSD), each level of the hierarchy is defined by both a
vertical distance tolerance and a lateral distance tolerance. Thus only those
vertices of linear features which approximate the line to within the preset
lateral tolerance are inserted as constrained edges within a particular level.
The constrained edge insertion procedure is similar to that of De Floriani
and Puppo, though it differs in allowing the insertion of intersecting edges,
by creating a new vertex at the intersection.

The MTSD describes primitive surface features in terms of points, lines
and polygons. Polygons are defined by lists of lines, while lines are defined
by lists of vertices. Objects of a particular class are defined by the polygon,
line and point features which constitute them. Each level of the MTSD is
represented by tables which define the objects and the polygon, line and
point features which are relevant to that level. In the case of the linear
feature tables, each record consists of data comparable to that used in the
line generalisation tree. Thus linear feature records contain a line feature
identifier, the identity of the highest level at which the line appears and a
list of vertex identifiers, each of which is accompanied by left and right

A3-5

www.manaraa.com

Appendix 3 Published Papers

control values. The control values record the numbers of vertices to be
inserted on either side of the referenced vertex at the next level down the
hierarchy. Line reconstruction is performed by means of a recursive
procedure described in Jones and Abraham (1986).

Spatial access to the MTSD is facilitated by the use of a pyramidal
structure consisting of regular grids for each level of the database. The cell
size of the grids differs between levels according to the density of objects
and triangles. Each cell references a list of the objects or triangles which
intersect it. The use of the pyramidal grid spatial indexing scheme is
comparable to that employed in the multiscale line tree which was
implemented both with quadtrees and with a regular pyramid index. This
approach to spatial indexing diverges from the Delaunay pyramid design of
De Floriani, which employs hierarchical links between pyramid levels to
guide spatial search. The regular grids provide a simple method of object
and triangle indexing. Their use in our experimental database is justified by
simplicity rather than optimality.

The MTSD has been implemented with a relational database
management system. The design does not conform fully to the relational
model in that it makes use of variable length fields for storing lists of data
items. Thus the linear feature tables store lists of vertex identifiers and
control values, the polygon feature tables store lists of linear feature
identifiers, the object tables store lists of point, line and polygon identifiers,
and the object grid and the triangle grid tables store lists of objects and
triangles respectively.

A major component of the storage space in the MTSD is that of the
triangulation tables for each level of the database. Having constructed the
triangulations and inserted the surface features at the various levels of
resolution. it remains an option to store only the identifiers of the
constituent vertices of each level. along with the point, line polygon and
object features which map onto them. When a surface is required at a
particular level of detail it may then be retrieved by obtaining the relevant
vertices and executing a constrained Delaunay triangulation algorithm.
Because reconstruction of the surface does not require the original tests for
surface error, a more efficient algorithm may be used, such as that
described by Chew (1987). Provided that the spatial window was expanded
sufficiently to model the boundary of the surface, it could be reproduced in
a form identical to when the database was constructed. This method is
termed implicit triangulation and has been described by Kidner and Jones
(1991).

A3-6

www.manaraa.com

Appendix 3 Published Papers

Three Dimensional Object Modelling

Multiresolution triangulated surface data structures have potential for
representing fully three dimensional structures of the sort required in

geological modelling. The construction of triangulated surfaces bounding
3D polyhedra is, however; complicated by the fact that, unlike normal
terrain, geological surfaces cannot be assumed to be single valued when
projected onto a plane. In general, they may be of any orientation and may
be overfolded, at least relative to the horizontal plane.

Procedures for Delaunay triangulation, in 2D and in 3D, of arbitrarily
oriented polyhedral surfaces have been described by Boissonnat (1984). In
the case of the 2D triangulation technique. vertices are projected onto local
tangential planes, on which triangulation then takes place. The vertices
which are triangulated belong to a neighbourhood which must be assumed
to represent a surface which is single valued relative to the local tangential
plane (which itself is found by a least squares fit). Working with subsurface
geological data, this assumption would not always hold true, since data may
be sparsely distributed and folding or reverse faulting could have occurred.
However, if information were available from borehole or seismic data
about the orientation of the boundary at each vertex, it would be possible. to
select vertices in order to improve the chances of working with a single
valued surface. It might also be possible to introduce constraints relating to
connectivity between vertices, based on geological interpretations of cross
sections obtained from borehole and seismic data.

The 3D volumetric approach to Delaunay triangulation described by
Boissonnat finds a surface represented by a set of vertices by determining
the boundary of a 3D tessellation, based on tetrahedra. Initially the
volumetric tessellation occupies the entire convex hull of the vertices, after
which tetrahedra occupying what are assumed to be concavities of the
surface are progressively eliminnated. Provided the original vertices have
been obtained by a relatively regular and dense sampling of the surface of
an object, the resulting triangulated surface may be expected to correspond
topologically to the real surface. As with the 2D triangulation scheme
referred to above, the Delaunay criteria for triangulation cannot be
guaranteed to reproduce the form of the real surface when using irregularly sampled vertices, particularly when combined with complex
structures. It may be envisaged that Delaunay criteria should only be
applied when no other constraining data are available.

Modification of the multiresolution database for topographic surfaces to
incorporate 3D surfaces will depend not only upon finding an appropriate
surface triangulation procedure but also upon finding a method of
classifying vertices according to their contribution to the shape of the

A3-7

www.manaraa.com

Appendix 3 Published Papers

surface. Faugeras et al (1984) have described a technique which does this
by retriangulating an initial higher resolution surface to within a given
error. The technique resembles the Douglas and Peucker algorithm for line
simplification, in that it uses a recursive procedure to determine points
which are most distant relative to a given approximation.

Whereas, in the Douglas and Peucker algorithm, distances are measured
perpendicular to an approximating line (starting with the line joining the
start and the end points), in the surface based method, distances are
measured from the plane of an approximating triangle. An initial triangle
segments the vertices into two halves, on the assumption that the vertices
represent a closed volume. The initial triangle's component vertices are
then retriangulated with the two vertices selected as most distant on both
sides of the plane. Using the vertices in the respective initial partitions, the
most distant vertices from each of these constituent triangles are then
found, subject to a constraint which confines the search to the connected
neighbourhood of each triangle. The procedure continues recursively until
no vertex is further from its parent triangle than the tolerance distance.
This procedure would preserve the edges of each triangle that was
subdivided, resulting in the possibility of a poor representation of the
surface. Faugeras et al alleviate this problem by breaking common edges at
an intermediate vertex and retrianoulatin , after each stage of the recursion
process.

Triangulated Models and Cartographic Generalisation

The MTSD previously described provides a framework for accessing
geographical information at multiple levels of 4generalisation. In describing
the data in the context of constrained trian ulated surfaces however, it
provides a tessellated representation of space which may be useful in
carrying out geiieralisation procedures used to derive representations at
different scales.

An important aspect of generalisation is the competition for map space
which results from the symbolisation of objects such that they occupy more
space than their true scale representation. As scale decreases the
symbolisation process dictates that object representations must be
simplified, moved from their true scale location, or eliminated entirely
from the map. Generalisation of individual objects within a map must be
done with regard to the integrity of adjacent map objects. The triangulated
model, or simplicial complex, is attractive in this respect, in that all space
on the map is explicitly accounted for. Furthermore, the triangular
topology can serve to record adjacencies between neighbouring objects.
Thus if all space is triangulated with disjoint (i. e. non-overlapping)
triangles, the edges emanating from the boundary of an object will be

A3-8

www.manaraa.com

Appendix 3 Published Papers

connected to the nearest objects.

If generalisation operators are applied to individual objects within a
triangulated space, any adverse effects of the operations can easily be
monitored, by testing the integrity of the triangulation. Whenever an
overlap occurs, characterised by the fact that a vertex of one object moves
across the boundary of another object, the triangle which connects the
originally adjacent objects will become inverted. This situation is
distinguished by a reversal in the rotational order of the triangle's
component vertices. Thus if initially ordered clockwise, they will become
anticlockwise on inversion.

a b

C d

Figure 1. Enlargement and displacement can result in loss of integrity of a
triangulation, indicated by inverted triangles (see text).

w

A3-9

www.manaraa.com

Appendix 3 Published Papers

The presence of inverted triangles provides a computationally simple
means of detecting potential conflict, actual overlaps and, in general,
topological inconsistencies due to an object moving across another object.
Identification of inversions can be used both to trigger operations such as
displacement, shrinkage and object deletion, and to guide the way such
operations are executed. Figure 1 illustrates a simple scenario in which an
initially consistent triangulation (a) is violated by the expansion of the
rectangular object on the right (b). An attempt to resolve the conflict by
moving the transgressed object leftwards (c) results in a further overlap
with the group of objects on the left. Resolution is achieved by moving this
group leftwards (d). The way in which conflict is resolved depends upon
the relative importance of the objects concerned. Research on the
applicability of triangulations to generalisation is in progress and results
will be published elsewhere. Control of the generalisation operators
according to context and purpose of the map will be achieved by means of a
frame-based knowledge representation and reasoning system.

Summary

A multiscale topographic surface database (MTSD), which integrates
point, line and polygon features within a triangulated terrain model has
been implemented. The hierarchical constrained triangulation scheme used
for surface description is being extended to enable the representation of
three dimensional geological objects bounded by multiresolution
triangulated surface patches. The technique of constrained Delaunay
triangulation is also being used for the purpose of generalising 2D maps. A
data structure which records the topology of the triangulation facilitates
the detection of spatial conflicts resulting from generalisation operators,
and their subsequent resolution in a Uu, tnnel which maintains the topological
integrity of the map. The MTSD design and the related generalisation
techniques are being incorporated within a deductive database system,
summarised in Jones (199I), for maintaining multiple representations of
geographical information.

Acknowledgements

JMW and GLB are supported by a SERC studentships in collaboration with
the British Geological Survey and the Ordnance Survey respectively.

References

Ballard, D. H. 1981. "Strip trees: a hierarchical representation for curves"
Communications of the ACM, 24, pp. 310-321.

Boissonnat, J-D 1984. "Geometric structures for three-dimensional shape
recognition", ACM Transact ions on Graphics, 3(4), pp. 266-286.

A3-10

www.manaraa.com

Appendix 3 Published Papers

Chew, L. P 1987. "Constrained Delaunay triangulations", Proceedings Third
ACM Symposium on Computational Geometry, Waterloo, pp. 216-222.

Chithambaram, R., K. Beard and R. Barrera 1991. "Skeletonizing polygons
for map generalization", Technical Papers ACSM-ASPRS Volume 2,
pp. 44-55.

De Floriani, L. 1989. "A pyramidal data structure for triangle-based
surface description", IEEE Computer Graphics and Applications, March
1989, pp. 67-78.

De Floriani, L. and E. Puppo 1988. "Constrained Delaunay triangulation
for multiresolution surface description", Proceedings Ninth IEEE
International Conference on Pattern Recognition, pp. 566-569.

Douglas, D. H. and T. K. Peucker 1973. "Algorithms for the reduction of
the number points required to represent a digitized line or its caricature",
Canadian Cartographer, 10(2), pp. 112-122.

Faugeras, O. D., M. Hebert, P. Mussi and J. D. Boissonnat 1984. "Polyhedral
approximation of 3-D objects without holes", Computer Vision. Graphics
and Image Processing, 25, pp. 169-183.

Frank, A. U. and W. Kuhn 1986. "Cell graphs: a provable correct method
for the storage of geometry", Proceedings Second International
Symposium on Spatial Data Handling, Seattle, pp. 411-436.

Gomez, D. and A. Guzman 1979. "Digital model for three dimensional
surface representation", Geo-Processing, 1,53-70.

Jones, C. B.. 1984. "A tree data structure for cartographic line
generalisation", Proceedings Eurocarto III, Research Center Joanneum,
Institute for Image Processing and Computer Graphics, Graz.

Jones, C. B. 1989. "Data structures for three-dimensional spatial
information systems in geology", International Journal of Geographical
Information Systems. 30), pp. 15-31.

Jones, C. B. 1991. "Database architecture for multi-scale GIS", Proceedings
Auto-Carto 10. ACSM-ASPRS, pp. 1-14.

Jones. C. B. and I. M. Abraham 1986. "Design considerations for a scale-
independent cartographic database". Proceedings Second International
Symposium on Spatial Data Handlind, Seattle, pp. 384-398.

Jones, C. B. and I. M. Abraham 1987. "Line generalisation in a global
cartographic database", Cartographica, 24(3), pp. 32-45.

Kidner, D. B. and C. B. Jones 1991. "Implicit triangulations for large terrain
databases", Proceedings EGIS'91, pp. 537-546.

Peucker, T. K., R. F. Fowler, J. J. Little, D. M. Mark 1978. "The triangulated
irregular network", Proceedings Digital Terrain Models (DTM)
S_.

_, osium, ASP-ACSM, St. Louis, pp. 516-540.
Scarlatos, L. and T. Pavlidis 1991. "Adaptive hierarchical triangulation",

Proceedings Auto-Carto 10, ACSM-ASPRS, pp. 234-246.
Weibel, R. 1991. "Amplified intelligence and rule-based systems", in MU

Generalization, edited by B. P. Buttenfield and R. B. McMaster, Longman,
pp. 172-186.

w

A3-11

www.manaraa.com

Appendix 3 Published Papers

INT. I. GEOGRAPHICAL INFORMATION SYSTEMS, 1992, VOL. 6, NO. 6,479-496

A multiresolution topographic surface database

J. MARK WARE and CHRISTOPHER B. JONES
Department of Computer Studies, The University of Glamorgan, Pontypridd,
Mid Glamorgan, Wales, UK

Abstract. Multiresolution data structures provide a means of retrieving geograph-
ical features from a database at levels of detail which are adaptable to different scales
of representation. A database design is presented which integrates multi-scale
storage of point, linear and polygonal features, based on the line generalization tree,
with a multi-scale surface model based on the Delaunay pyramid. The constituent
vertices of topologically-structured geographical features are thus distributed
between the triangulated levels of a Delaunay pyramid in which triangle edges are
constrained to follow those features at differing degrees of generalization. Efficient
locational access is achieved by imposing a spatial index on each level of the
pyramid.

1. Introduction
Many existing geographical information systems (GIS) may be regarded as limited

by the fact that the spatial models they employ represent the Earth's surface in only two
dimensions and only at a fixed level of detail. When models of the terrain surface are
included in GIS they are typically present as an independent representation consisting
of an array of elevation values or a triangulated network of irregularly distributed

elevations. For several types of spatial analysis, such as slope studies and visibility
determination, this separate representation may be satisfactory and, particularly for

raster-oriented analysis, very convenient. However, with the increasing use of GIS for

urban and regional planning, and in the geosciences, it may be envisaged that the
ground model could be more conveniently regarded as an integral part of a
topographic database rather than as a separate layer. For many such applications it

should be possible to visualize the model at different levels of detail, according to the
areal extent, or scale, of the region of interest. Thus it is desirable to be able to treat
urban infrastructure and natural features as embedded within a 2.5-D surface which
can be retrieved at varying levels of detail. This would facilitate multi-scale 2.5-D

visualization of existing and planned environments, and the interpretation and analysis
of geoscientific data.

Since accurate representation of topographic features requires that they be
locatable at arbitrary coordinates, there is considerable advantage in using a TIN
surface model (Peucker et al. 1978), rather than a grid which would limit the locational

resolution. A further advantage of triangulated surfaces is that they lend themselves
both to a multi-resolution representation of the ground surface and to the incorpor-
ation of vector models of topographic features. A data structure which provides multi-
resolution access to a triangulated surface is the Delaunay pyramid (Dc Floriani 1989).
De Floriani and Puppo (1988) have shown how the construction of a multi-resolution
trangulation can be constrained by linear features which become included as triangle
boundaries.

This article presents the results of a continuing research project with the aim of
designing a multi-scale database which integrates vector-defined geographical features

0269-3798/92 $3.00 ©, 1992 Taylor & Francis Ltd.

A3-12

www.manaraa.com

Appendix 3 Published Papers

480 J. M. Ware and C. B. Jones

with a digital elevation model. The data structures used in this database combine
aspects of two-dimensional multi-scale database design (Jones 1984, Jones and
Abraham 1986 and 1987) with a constrained Delaunay pyramid. In the following
sections, the multi-scale storage of 2-D linear features is discussed briefly before
summarizing the characteristics of De Floriani and Puppo's constrained Delaunay
pyramid. Our modification of the latter is then described with reference to the issues of
including generalized features and spatial indexing. An algorithm for building the data
structures is also described, before presenting an implementation which uses -a
relational database management system. Finally, some implementation issues are
discussed and future directions for research indicated.

2. Multi-scale access of linear features
Access to linear features at variable scales can be achieved either by storing multiple

versions of the linear feature at predetermined scales; by storing a single large-scale

version from which smaller scales are derived using generalization algorithms; or by

means of a multiresolution data structure specifically adapted to retrieving variable
degrees of detail. Storage of multiple versions results in significant storage overheads
owing to duplication of the constituent vertices between different versions. Retrieval
from a single version could incur major processing overheads when deriving a
representation of much smaller scale than the original linear feature. Multiresolution
data structures represent a compromise between the two approaches.

The line generalization tree (Jones 1984, Jones and Abraham 1987), which can be
thought of as a relative of the strip tree (Ballard 1981), is an example of a
multiresolution data structure in which vertex duplication is minimized, while
providing selective access to those vertices required for a particular scale represen-
tation. It achieves this by firstly assigning to each point a level of scale significance using
a line generalization algorithm and then storing that point at its corresponding level in
the tree. Therefore, at each level, only those points which are intermediate to points at
the previous level in the tree are stored. The order of points within a linear feature can
be maintained by either associating with each point a left and right control value which
records the number of adjacent intermediate points at the next lower level or by storing
a sequence number for each point which records its position in the original line.
Although this method introduces additional data in the form of either the control
values or the sequence numbers, it significantly reduces the data overheads of mutliple
line storage (Abraham 1988). Jones and Abraham (1987) also describe a strategy for
spatially segmenting each scale-specific level in a data-adaptive manner using quadtree
cells, the resulting structure being termed a multi-scale line tree.

A data structure with close similarities to the line generalization tree and the strip
tree is the BLG-tree (van Oosterom and van den Bos 1989, van Oosterom 1990). This
is a binary tree in which each node stores a line segment accompanied by the most
distant intermediate point of the original curve, its distance, and pointers to the two line
segments defined by the current start and end points and the intermediate point. The
BLG-tree differs in particular from the line generalization tree in that the latter employs
discrete levels of generalization. For the purpose of combining generalized linear
features with the constrained Delaunay pyramid, the use of the line generalization tree
appears the more appropriate since the pyramid structure also employs discrete levels
of accuracy (or generalization). It is noted that, although originally designed for storing
linear features, the line generalization tree is also capable of storing polygonal features.

A3-13

www.manaraa.com

Appendix 3 Published Papers

Multiresolution topographic database 481

3. The constrained Delaunay pyramid-a hierarchical terrain model
Hierarchical surface models, such as those described by Gomez and Guzman

(1979), Barrera and Vazques (1984), Chen and Tobler (1986) and De Floriani et al.
(1984), provide representation of a surface at different resolutions. These models are
deficient in that they produce approximations which are either numerically inaccurate
because of the elongated shape of their constituent triangles or are well-suited only to
regularly sampled data (De Floriani 1989). The Delaunay pyramid (De Floriani 1989) is
a hierarchical multiresolution surface model which overcomes these problems. It uses a
data structure made up from a number of Delaunay triangulations, each approximat-
ing the true surface to a different level of accuracy, linked together in increasing order of
accuracy in a tree-like manner (figure 1).

The pyramid is built from a set of points S by firstly constructing an initial
constrained Delaunay triangulation, which would include those points of S which
either define the domain boundary or are the most important surface-specific points
(peak, pits and passes) and lines (ridges and valleys). Each triangle is defined by its three

Level I

Level 2

F2

E2

12 e D2

7 H2

7KZ-;

a

Level 3

N3

ýö
M3

A3
ý3 b D3

H3

Adjacent Child
Id Type Verticies Triangles Triangles

Al 0 154 B1 F1 - A2
BI 0 165 Cl El Al C2H2J2K2
Cl 0 126 - Dl 51 C2 H2
Dl 0 623 Cl - El D2
El 0 336 Fl 81 DI E2
Fi 0 345 - Al El F2

A2 I K2 F2 - A3
D2 I H2 - E2 D3
E2 I F2 12 02 W M3
F2 2 13M3N3P3
C2 0 127 - H2 K2 C3
H2 0 267 D212 C2 H3
J2 0 657 E2 K2 H2 13
K2 0 751 12 A2 C2 K3

A3 1 K3 !3-
D3 1 H3 - X13
C3 2
H3 2
J3 1 L3 K3 H3
K3 2
L3 0 568 J3 M3 P3
M3 0 638 D3 N3 L3
N3 0 834 M3 - P3
P3 0 584 L3 N3 A3

Figure 1. An example of a3 level Delaunay Pyramid. Triangles of type 0 correspond to internal
triangles, triangles of type 1 to boundary triangles and those of type 2 to external triangles.
Venice and adjacency information of boundary and external triangles is found by
examining the parent triangle.

A3-14

www.manaraa.com

Appendix 3 Published Papers

482 J. M. Ware and C. B. Jones

vertices and its three adjacent triangles. Pyramid construction proceeds by taking an
additional point from the set S, that point being the one furthest away from the
approximated surface, and adding it to the surface, which is then re-triangulated (figure
2). It is important to note that, owing to the circle criterion in the Delaunay
triangulation, only those triangles whose circumcircles contain the new point will have
to be re-triangulated. The process of adding points and re-triangulating is repeated
until a preset error tolerance is reached for that level. The next level, initially identical to
the first level, is then created. Further points are added from S until the error tolerance
for that level is reached. New levels continue to be added to the pyramid until the most
detailed level has been created to the required accuracy.

It is likely that some of the triangles at a particular level will be completely retained
in the next lower level or will differ only in regard to their adjacent triangles. The
Delaunay pyramid overcomes data duplication by storing triangles as either internal,
boundary or external. An internal triangle is defined by its vertices and its adjacent
triangles. Boundary triangles will consist of a pointer to a parent triangle, from which
its vertices will be obtained, and a reference to its three new adjacent triangles. An
external triangle is completely described by a pointer to a higher level triangle. Each
triangle in the Delaunay pyramid also maintains a pointer to those triangles contained
in the next lower level which intersect it. This provides some direction to spatial search
by allowing the pyramid to be traversed quickly once possible triangles have been
identified at the top level.

Scarlatos and Pavlidis (1991) point out that the Delaunay pyramid, along with all
terrain models based solely on Delaunay triangulation, tends to ignore the third
dimension, and may therefore produce edges that contradict the topology of the actual
surface. They attempt to overcome this problem by proposing a non-Delaunay
triangulation scheme, termed adaptive hierarchical triangulation, which produces a
multiresolution terrain model that adapts itself to surface characteristics. However, this
method does not appear to be suited to the inclusion of topographic (non-elevation)
feature data in the model. To counter the apparent inadequacy of the Delaunay
pyramid, De Floriani and Puppo (1988) have proposed a dynamic, easy-to-code
algorithm to produce a constrained Delaunay pyramid (figure 3). The ability to
introduce constraints into a pyramid ensures that specific linear features, such as
valleys and ridges, can be retained as connected edges within each level of the pyramid.
In principle, this mechanism for constraining the triangulation facilitates the inclusion
within it of any point, linear or polygonal feature, whether physical or cultural.

1919

Triangulation Identify triangle Construct the Triangulate the Triangulation
before new point in which the new polygon which polygon and delete after new point
is inserted. point lies. bounds the triangles the'old' triangles. is inserted.

influenced by the
new point.

Figure 2.

A3-15

www.manaraa.com

Appendix 3 Published Papers

Multiresolution topographic database 483

bbbbb

aaaaa

Triangulation Construct the Split the polygon Triangulate the Triangulation
before segment polygon bounding in two about the two polygons. after segment
a-b is inserted. the triangles segment and a-b is inserted.

influenced by delete'old'
segment a-b. triangles.

Figure 3.

4. A hierarchical model for both feature and terrain data
The model presented here, building upon the line generalization tree and

constrained Delaunay pyramid, introduces a spatial data access scheme suited to the

efficient storage and retrieval of terrain and topographical feature data at multiple
scales. Vertices, or points, representing point, line and polygonal features, are merged
with those points defining the surface to form a single data set. These points, each of
which is allocated a unique identifier, are then used to construct a constrained
Delaunay pyramid.

A unique aspect of the work is the ability to include topologically-structured
features, such as pylons (point), railways (line) and county borders (polygonal) within
the pyramid. In the case of line and polygonal features, these occur as chains of
constrained edges within the pyramid. These are in addition to those surface features

necessary to characterize the shape of the surface, such as ridges and valleys. Point, line

and polygonal features, all of which are embedded within the pyramid, are arranged in

a hierarchical manner. Each polygon is stored as a collection of one or more line
features, which in turn references, via a line generalization tree, vertices within the
pyramid. Point features are represented as direct references to these vertices. It is noted
that Kraak and Gazdzicki (1991) present a triangle-based terrain model capable of
representing both the terrain surface and spatial objects related to it. This model is

applied to what they term Cartographic Terrain Modelling (CTM). The fundamental
difference between CTM and the model presented in this paper is that CTM is limited
to single-scale representation of data.

In certain cases, constrained edges within a triangulation may represent more than
one feature. For example, a national boundary very often coincides with some physical
boundary, such as a river. Furthermore, objects of interest may consist of sets of point,
line and polygonal features. This can be illustrated by considering a factory as an object
of interest, which is itself made up from point, line and polygonal features. To

accommodate such occurrences, while at the same time minimizing data duplication,

an additional entity, referred to here as an object, is introduced into the data structure
hierarchy. Each object consists of an unique object identifier and a list of pointers to the
appropriate point, line and polygonal features making up that object. For the first

example, the physical boundary and the political boundary, each stored as a separate
object, would refer to the same embedded feature or list of features. The factory, also
stored as an object, would refer to each of its constituent point, line and polygonal
features.

A3-16

www.manaraa.com

Appendix 3 Published Papers

484 J. M. Ware and C. B. Jones

4.1. Spatial access
Efficient access to this hierarchical model is provided by introducing spatial

indexing at each level in the pyramid. This indexing technique replaces the parent
triangle to child triangles pointer method employed by De Floriani. The method used
here employs a regular grid overlay scheme, where each grid cell maintains a list of
references to all data which intersect it. For the model presented here, it is thought

necessary to provide spatial indexing on objects and triangles. Also, since certain
objects and triangles may be relevant to some levels in the pyramid and not to others,
the spatial access structure has been separated into levels. Therefore, at each level in the

pyramid there is an object grid, referencing all objects relevant to that level, and,
similarly, a triangle grid, referencing all triangles relevant to that level (figure 4). In this

particular model, an object or triangle is deemed to be related to a particular object cell
or triangle cell, respectively, if any part of that object or triangle intersects the cell. It is

clear that the number of cells in each spatial grid will determine the optimality of
searching operations. A dense grid will, in general, be more efficient in terms of search
time than a more refined grid. However, this benefit has to be weighed against the
resulting increase in storage requirements. McCullagh and Ross (1980), when using a
similar type of grid structure to assist in constructing the Delaunay triangulation of a
set of points, suggest a grid which allows an average of four points per cell. In the model
described here, the number of cells within each grid varies according to the total

number of objects or triangles it references, following the approach described by
Franklin (1983) for indexing lines for detecting intersections. A temporary grid index,

which references points, is also used for the purpose of efficient pyramid construction.
Although this indexing scheme lends itself to referencing all occurrences of objects

within a specified area, it does not take into account the spatial extent of individual

objects. Thus locationally-specific retrievals involving areally extensive objects could
lead to a large amount of unwanted data having to be read. This would be particularly
true of high resolution data. This problem could be solved by ensuring that individual

object components, that is, the point, line and polygonal features from which an object
is made up, be limited in size. This can be achieved by segmenting any overly extensive
line features and polygonal features (or to be more precise, the line features from which

Triangle Gi Cell Address

r -- -- i 10 i
i N3 i

i P3 M3
Oi -- r- - --i 21- --

i A3 D3
i 13

iH3
ý -- - --r22 ---

G3

i

Cell
Address

Intersecting
Triangles

00 A3 P3 N3
10 P3N313
20 N3 M3 D3
01 A3P3K3
11 P3A3K3J3L3H3
21 M3L3J3D3H3
02 A3 K3 G3
12 K3 G3 H3
22 G3 H3 D3

Figure 4. Example of how triangles are spatially referenced using a regular grid overlay. Each
cell references all triangles which intersect it. A similar structure is used for accessing
objects.

A3-17

www.manaraa.com

Appendix 3 Published Papers

Multiresolution topographic database 485

the polygonal feature is made up) into a series of less spatially extensive line features.
For example, an object, representing a river, might originally have had a single
reference to one spatially extensive line feature. After segmentation has taken place, the
same object will now have a list of references to a series of less extensive line features,
these having replaced the original line feature. A further enhancement of this structure
would be to replace the regular-sized grid with a data-adaptive indexing method such
the bounding quadtree (Abel and Smith 1983). This would ensure that no single cell
references more than a preset maximum amount of data.

The issue of spatially segmenting line data within a multiresolution model is quite a
topical one. The multi-scale line tree (Abraham 1988, Jones and Abraham 1986 and
1987), an extension of the earlier line generalization tree (Jones 1984, Jones and
Abraham 1987), provides efficient spatial access to linear data at various scales. It

achieves this by classifying the internal points of digitized lines into hierarchies of scale-
specific levels, which are themselves spatially segmented in a data-adaptive manner,
using quadtree cells. A recent data structure, the Reactive-tree (van Oosterom 1991
and 1990), also provides efficient storage and retrieval of geometric objects at multiple
levels of detail. By combining the R-tree (Guttman 1984), which provides efficient
access to data objects by storing bounding rectangle information with each object, and
the BLG-tree, the Reactive-tree allows both objects and the points making up the
objects to be retrieved on the basis of position and scale. A more recently published
paper by Becker et al. (1991) introduces the Priority Rectangle File (PR-file). Here, the
points defining line and polygonal objects are assigned levels of scale significance using
a line generalization algorithm. These points are then stored in a data structure which
combines certain aspects of the line generalization tree and the R-file (Hutflesz and Six
1990). Here the possible retrieval of unwanted data is minimized by limiting the
maximum number of points contained within a single bounding rectangle, thus limiting
the spatial extent of individual object parts.

The type of spatial indexing method employed can be governed to a certain extent
by the characteristics of the data that are being included in the model. If individual line
features are likely to be spatially extensive it would be wise to consider a scheme which
is able to segment spatially individual data items. However, it may be that relative to
the total area being modelled, individual line features are not extensive. If this is the case
it would appear sensible to remain with a simpler approach. The authors, while
admitting that the simplicity of their spatial model is currently the sole motivating
factor for its use, are as yet unsure whether a more elaborate scheme would significantly
improve the spatial search facilities provided by their model. It may be noted that the
recent work by van Oosterom (1991 and 1990) and Becker et al. (1991) provides
examples of multi-scale storage schemes, which in the former case do not segment
individual linear features, while in the latter case their component vertices are grouped
into rectangular subdivisions. The relative efficiency of the two schemes is not known.

4.2. Critical point selection
A method of deciding at which level, and then subsequently at all lower levels, a

particular point first appears in the pyramid has to be established. It will be governed
by either the point's relevance to a particular object or its significance in describing the
surface. The Delaunay pyramid selects points by means of a point insertion algorithm.
Here, a point is included at a particular level if the vertical distance of that point from
the approximated surface is greater than a given error tolerance for that level. Any
point which does not form part of a topographic object will be dealt with in this way.

A3-18

www.manaraa.com

" Appendix 3 Published Papers

486 J. M. Ware and C. B. Jones

Those remaining points, all of which form part of an object, present a more difficult

problem. The level at which a particular point of a linear feature is inserted can be

generated by using a suitable line generalization algorithm (reviewed by McMaster
1987) to classify the internal points of the linear feature into a specified number of levels

of scale-related significance. The method used here is that of Douglas and Peucker
(1973), which has proved successful in retaining the shape information of a linear
feature as the number of points describing it is reduced (McMaster 1983). Another of its

properties, essential in allowing a linear feature to be stored hierarchically, is that
points selected for small scales are a subset of those used in a larger-scale

representation. This algorithm is also suitable to some extent for simple polygonal
shapes. Generalization of the points of more complex polygonal features, such as
buildings, into levels of scale significance cannot easily be achieved automatically. The
level at which these points are inserted would, under the present version of our scheme,
have to be determined manually. It should be noted that each point forming part of a
feature will also have a height value associated with it which is used to evaluate the
point's significance in describing the surface. This value may have formed part of the
source data or will have been interpolated using a previously built Delaunay
triangulation of all the surface points. It is therefore possible that points which form

part of an object may be inserted at a higher level in the pyramid than the level

originally indicated by the object generalization procedure.

5. An algorithm for building the hierarchical model
An algorithm, adapted from that of De Floriani and Puppo (1988) for building a

constrained Delaunay pyramid (CDP), is given in figure 5. It constructs the model from
a set of points S and a list of objects 0. Each object is defined by a list of references to its
constituent point, line and polygonal features. Polygonal features reference line
features, which in turn reference points, via a line generalization tree. Each point which
forms part of an object must be included in S and also have a level flag associated with
it. This level flag ensures that it is inserted at the correct level of the pyramid, although it
is possible that the point is inserted at some higher level according to its importance in
approximating the surface.

Each object is inserted into a triangulation by sequentially inserting each of its line
and polygonal feature components (point components will already have been
included). Line and polygonal features are inserted as a series of straight-line segments.
Algorithms for inserting points and straight-line segments into a Delaunay triangu.
lation are given in the literature (De Floriani and Puppo 1988, Heller 1990). Brief
descriptions of these methods have been shown in figure 2 and figure 3.

The CDP algorithm as presented by De Floriani and Puppo is restricted in that it
caters only for non-intersecting straight-line segments. This creates a problem when
introducing topographic features into the pyramid because their constituent straight-
line segments can sometimes intersect each other. For example, this may occur when a
road crosses over a county border. The adapted CDP algorithm makes provision for
such occurrences by firstly introducing an additional point into the pyramid at the
point of intersection of the two line segments (this point is given an interpolated
elevation value), and then substituting the two original line segments with four
replacement segments. This process is illustrated in figure 6.

A3-19

www.manaraa.com

Appendix 3

Multiresolution topographic database

Published Papers

487

adapted cdp algorithm
set up object generalisation tolerances for each level
assign levels of significance to each object point
build line generalisation tree for line features
set up surface error tolerances for each level in the pyramid
create the initial triangulation
set up spatial grids
get surface error tolerance for first level
set finished = false
while (more unused points in S) and (not finished)

find next point to insert
check accuracy of current level, ie. all unused points are within surface error tolerance
if (current level is accurate) then

insert any unused object points required at this level
update spatial grids
if (current level is last level) then

set finished = true
else

get error tolerance for the next level
endif

else
insert the point
update spatial grids
set point to used

endif
endwhile
while (more objects in 0 to insert)

for each level in the pyramid
for each object part

insert object part into triangulation
endfor
update spatial grids

endfor
endwhile

end adapted cdp algorithm

Figure 5.

Segment a-b cannot be Therefore, delete segment
inserted since it intersects c-d and insert point x where
another line segment, c-d. line segments intersected.

Figure 6.

Finally, insert four
substitute line segments,
a-x, x-b, c-x and xd.

A3-20

www.manaraa.com

Appendix 3 Published Papers

488 J. M. Ware and C. B. Jones

6. A relational database implementation
The modified constrained Delaunay pyramid algorithm has been implemented in C

on a DEC Vax 8800 machine. Objects, features, points, the spatial index grids and the
constrained Delaunay pyramid are stored as tables within a relational database

management system (figure 7). All processes of pyramid construction and update
operate directly on this database. A pyramid is built using the Building Program, which
is also used for adding points and objects to any existing pyramid. The pyramid can
also be accessed by application programs capable of tasks such as producing 2.5-D
views, contouring, profiling and point location and height evaluation.

Each point belonging to S, having been assigned a unique identifier (point-id), is
stored in the Point Table. Initially, the level-used flag for all surface points will be
assigned a null value while the level_used flag of linear feature points will be set to the
level of significance assigned to it by the line-generalization algorithm. The level_used
flag of all points will be updated depending on which level in the pyramid the point is
first used. It is noted that for large data sets, storing all the points in a single table could
lead to slow data access. A more efficient method could be to store all the points
associated with particular levels in separate tables.

The Triangle Table holds the details of each of the triangles in the pyramid. The
table is constantly updated as the pyramid is built. Each triangle in the pyramid is given
an identification number (trLid) when it is created. It should be noted that if a triangle
exists at more than one level (in the form of a boundary or external triangle in the lower
level) it will have the same tri_id at each level. The level to which a triangle belongs is

Point Table Triangle Table Internal Table Boundary Table

point_Id let trl id Int gcom id Int rotn id Int
level-used Int kwel Id let vertl d Int adll_Id Int
x value Will tri type Int vert2_Id Int adß_Id Int
Y--value Real grorn_Id Int vert)_d Int ada_Id Int
z value Real adll Id let

C s'; adß_Id Int
z, Aý fr "T adj3 Id let lt.

i, '..
7ý.

"e""M

Object Table
Linear Feature 1-e"el 1 Polygonal Feature Table l evel 1

obtcct td Int Table I evel t
obwet class Char

p id Int
linear d Int

h _no
Int

near %iwar-ods Char
Char Char

IinN_Icvel

ncards
hoar r1s

potnl
point-ids Chur

Ws Char RM t1O$ Char

Pyramid Table

level-no Int
t tcral error Real Object Grid Triangle Grid

vertical error Real Table level 1 Table t evel I
object_gnd_a Int
obpvt_ nd_y let a caord Real a_cowd Rol
Inanglcýnd t Int Y_nprd Real y_coord Real
trunglc, ýndy Int ohRct bs Char tn_Ida Chu

Building 1(Application
Program JI Programs

Figure 7. The relational Database Implementation, showing the column (field) descriptions for
each table.

A3-21

www.manaraa.com

Appendix 3 Published Papers

Multiresolution topographic database 489

denoted by its level_id value. Therefore the tri_id coupled with the level_id forms a
unique key for each triangle. As in the case of the Point Table, it may prove beneficial to

store each triangulation, or level, in a separate table. The tri_type flag is set to 0,1 or 2
depending on whether the triangle is internal, boundary or external, respectively. The

geom_id field is used as a pointer to the appropriate record in either the Internal or
the Boundary Table. The Internal Table holds the full geometry and adjacency
information for internal triangles while the Boundary Table holds the adjacency
information for boundary triangles. The vertices of Boundary triangles are found by

obtaining details from a higher level triangle. No External Table is required since the
geometry and adjacency information of an external triangle can be found by retrieving
the details of the triangle with the same tri_id as it in the previous level of the pyramid.

There is a Linear Feature Table, a Polygonal Feature Table and an Object Table for

each level in the pyramid. Each of the Linear Feature Tables can be thought of as a level
in a line generalization tree. An individual linear feature (linear-id) is described by a list

of points (point-ids), each of which has a final pyramid level of significance assigned to
it. Each of these points has a sequence number (seq_nos) associated with it indicating its

position in the original line. To assist in making the retrieval of data more efficient, the
Linear Feature Tables also keep a record of the level at which each linear feature first

appears in the pyramid (first-level-no). The polygonal features present at a particular
level in the pyramid are stored in the Polygonal Feature Table assigned to that level.
Each polygonal feature (polygonal-id) is described by a list of linear features (linear_
ids) from which it is made up. Each Object Table contains a reference to all objects
relevant to its particular level in the pyramid. Each object reference consists of an object
identifier (object-id), a list of object class identifiers (class-ids) and lists of the point
(point-ids), linear (linear-ids) and polygonal (polygon_ids) features which make up
that object. The object class identifiers are used to assist in thematic retrievals of
information.

The object Grid Tables and Triangle Grid Tables correspond to the spatial grids
detailed in § 4.1. Each entry in a spatial table consists of the x, y coordinates (x_coord,
y_coord), of the bottom left hand corner of the cell it represents and a list of objects or
triangles (object-ids or tri_ids) which intersect that cell. The number of cells in the x and
y direction of each object grid (object-grid-x, object-grid-y) and each triangle grid
(triangle-grid-x, triangle-grid-y) is stored in the Pyramid Table. This table also stores
the lateral error (related to object resolution) and vertical error (related to terrain
resolution) associated with each level.

All lists stored in the relational database tables (point-ids, linear_ids, polygon-ids,
seq_nos, object-ids and tri_ids) are, for implementation purposes, stored as character
strings. These strings are converted into integer values by the Building Program (and
any applications program) before being used.

7. Integration of data into the relational database system
The system described has been used to model data acquired from the British

Geological Survey (BGS). Two data sets were involved-line data, representing
geological outcrop boundaries, and terrain data in the form of irregular (x,)y, z) point
data. The data covers a5 km by 5 km square in the Grantham area. Figure 8 is a plot of
a 2.5 km by 2.5 km section of the terrain data and contains 894 points. Figure 9 is the
geological line data for the same area. The lines are represented by a total of 727 points.

The data sets were used as input for the constrained Delaunay pyramid Building
Program. The number of levels in the pyramid was restricted (arbitrarily) to two.

w

A3-22

www.manaraa.com

Appendix 3

490 J. M. Ware and C. B. Jones

i Figure 8. Number of points = 894.

Published Papers

Figure 9. Number of points= 727.

Additional, intervening levels could have been included, giving a more gradual change
in detail between levels. It should be noted that the storage benefit gained by having
boundary and external type triangles within the pyramid is fully realised only when
changes in detail between successive levels are relatively small. This is because large

changes in scale between successive levels will probably cause many of the triangles in
the parent triangulation to be replaced by new, non space-saving internal triangles in
the lower level triangulation. Each level has two-error tolerances associated with it: (i)

vertical error which governs how accurately the level depicts the terrain, and (ii) lateral
error which governs how accurately the line data are represented at that level. The error
tolerances chosen in this case were

Level Vertical error (m) Lateral error (m)

1 10.0 50.0
2 5.0 10.0

A3-23

www.manaraa.com

Appendix 3 Published Papers

Multiresolution topographic database 491

These error tolerances were chosen simply to emphasize the change in detail
encountered at each level of the pyramid. The authors are at present unaware of a
relationship that exists between these error tolerances and true scale. The constrained
Delaunay pyramid produced is shown in figures 10 to 13.

8. Performance
The worst-case time complexity of our adapted constrained Delaunay pyramid

algorithm is 0(n2), which represents a lower limit for any incremental Delaunay
triangulation algorithm applied to a set of points S (see De Floriani and Puppo 1988).
The relational database implementation has been tested on a number of large data sets.
Performance for building the database was poor in terms of processing time,
particularly when compared to an indexed sequential UNIX-based C version which

Figure 10. Level 1 unconstrained. 118 level points (e=10 m), 177 line points (e a 50 m).

Figure 11. Level I constrained. 118 level points (e =10 m). 177 line points (e a 50 m).

A3 - 24

www.manaraa.com

Appendix 3

492 J. M. Ware and C. B. Jones

Published Papers

Figure 12. Level 2 unconstrained. 190 level points (e5 m), 338 line points (e a 10 m).

Figure 13. Level 2 constrained. 190 level points (e=Sm). 338 line points (ea 10m).

has also been implemented. For example, database construction for the BGS data can
take up to 2 hours using the relational database version compared to a time of about a
minute for the indexed sequential UNIX-based version. This is due for the most part to
the large number of single record SELECT and INSERT operations delivered by the

program to the database during the building process. It is believed that time efficiency
will improve significantly by implementing within the program a type of paging
mechanism. One possibility here would be for large blocks of tables, possibly whole
tables, to be read into internal arrays where they would be processed before being

returned to the database, thus simulating the main memory-based version. It should be

noted, however, that the emphasis of the current research is on the logical design rather
than an optimal implementation of the proposed database.

A3-25

www.manaraa.com

Appendix 3 Published Papers

Multiresolution topographic database 493

The amount of storage required for De Floriani's pyramid structure is the space
used to store each triangulation plus that required to store the inter-level links
(De Floriani 1988) and is given by

I" (1) 4n'+5(m+1)+ Y, (9tß+2s)
r=o

where n' is the total number of points used in the pyramid, (m+ 1) gives the number of
levels in the pyramid, ti represents the number of triangles at level i and si gives the
number of triangles of level (i+ 1) intersected by triangles of level 1. This equation
indicates a storage requirement of O(n), where n is the total number of points in S.

Using a similar notation, the storage requirements of the proposed scheme compare
favourably with those of the constrained Delaunay pyramid and consist of the space
required to store each triangulation plus the spatial index at each level. Using a
separate table for each triangulation and considering the worst case, that is when all
triangles are stored as internal and each triangle grid cell contains a list of all triangles
contained in the triangulation (for the sake of a valid comparison with De Floriani, the
storage required for spatially indexing objects is neglected), the amount of storage
required is represented as

4n'+2(m+ 1) + (11 +2xiyl)tr (2)
1-o

where xi and yi are the number of spatial cells in the horizontal and vertical directions at
level i respectively. Since m<n, storage requirements will be independent of the number
of levels in the pyramid and will be highly dependent on the number of spatial cells at
each level.

Additional storage will be required for the Linear Feature Tables, Polygonal
Feature Tables and Object Tables. This will be directly proportional to the number of
features and objects encoded. It should be noted that object specification requires
referencing only the identity of vertices, rather than the coordinates, which are stored
only once in the Points Table.

9. Discussion
An alternative approach to implementing the spatial index for triangles would be to

store only one triangle per cell, possibly the most central. All other triangles
intersecting that cell could then be deduced by accessing recursively the surrounding
adjacent triangles. Equation (2) would then become

4n'+2(m+1)+ (lltr+3xiy,) (3)
ro

which is 0(n).
The incremental triangulation algorithm that we used relies on the fact that

inserting a point or constraining edge results in only local modifications to the
triangulation. It may be that the dual edge structure rather than the traditional
triangle-oriented construct used in our model, would be more appropriate for such an
algorithm (Heller 1990).

At present, points are selected for inclusion at a particular level depending on either
their importance in describing the surface or their significance in describing a particular
object. Thus surface-specific points are selected according to their vertical displace-
ments relative to the surface, while object points may also be selected on the basis of

A3-26

www.manaraa.com

Appendix 3 Published Papers

494 J. M. Ware and C. B. Jones

their lateral displacement. Work has recently begun to design data structures suitable
for modelling 3-D geological data (see Jones 1989). With this in mind, investigations
into developing a fully 3-D point selection algorithm are currently being undertaken.

An alternative approach to storing the pyramid, which would save a considerable
amount of storage space, is that of using implicit triangulations (Kidner 1991, Kidner

and Jones 1991). The pyramid would be built in the same way as previously described.
However, once all required levels of accuracy were obtained and points allocated a level

at which they are included, no permanent storage of the triangulations would be

retained. Triangulations could then be reconstructed at run time using a suitable
constrained Delaunay triangulation algorithm. This method could take advantage of
the recent development of fast parallel algorithms for building the constrained
Delaunay triangulation from a set of points. An example of such an algorithm, for

normal Delaunay triangulations, has recently been implemented using a network of
transputers (Ware and Kidner 1991). Also, for certain applications, it may not be

appropriate to include all classes of object as constraints within the pyramid. Implicit
triangulations would allow the user to select, at run time, which classes of object are to
be included in the model. It is thought that such a system would benefit by storing those
points forming part of an object and those which define the surface in separate tables.

10. Conclusion
A data storage scheme has been presented which succeeds in allowing terrain and

topographic object data to be combined in a single database at multiple levels of detail.
Points, lines and polygons are integrated with, and serve to constrain, an hierarchical
triangulation which avoids data duplication. The database is accessed via a spatial
index referencing topographic objects and the triangles that model the terrain surface.
The scheme has been implemented with both a commercial relational database

management system and with an indexed sequential UNIX-based file handling facility.
For the purpose of building the database, the relational implementation gave a
relatively poor time performance, which experiments with main memory data
processing indicate could be greatly improved. Current research efforts are concerned
with developing a fully three-dimensional multiscale model suitable for representing
geological data.

Acknowledgments
The authors would like to express their appreciation to The British Geological

Survey who have provided financial and technical support for parts of the research
presented in this paper. JMW is currently supported by a SERC CASE studentship.

References
ABEL, D. J., and SMITH, J. L., 1983, A data structure and algorithm based on a linear key for

rectangular retrieval. Computer Visions, Graphics and Image Processing, 2,1-13.
ABRAHAM, I. M., 1988, Automated cartographic line generalisation and scale-independent

databases. Ph. D Thesis, Dept. Computer Studies, The Polytechnic of Wales.
BALLARD, D. H., 1981, Strip trees: a hierarchical representation for curves. Communications,

Association for Computing Machinery, 24,310-398.
BARRERA, R., and VAZQuEs, A. M., 1984, A hierarchical method for representing relief.

Proceedings Pecora IX Symposium on Spatial Information Technologies for Remote Sensing
Today and Tomorrow, Sioux Falls, South Dakota (South Dakota: IEEE), pp. 87-92.

A3 - 27

www.manaraa.com

Appendix 3 Published Papers

Multiresolution topographic database 495

BECKER, B., Six, H. -W., and WIDMAYER, P., 1991, Spatial priority search: An access technique for
scaleless maps. Proceedings SIGMOD 1991 (Denver, Colorado: ACM), pp. 128-137.

CH EN, Z. T., and ToBLER, W. R., 1986, Quadtree representation of digital terrain. Proceedings of
Auto-Carto London edited by M. Blakemore (London: Auto-Carlo London Ltd), pp. 475-
484.

DE FLORIANI, L., 1988, A data structure for encoding a Delaunay pyramid. Technical Report
IMA n. 19/88 Genoa, Italy, February 1988.

DE FLORIANI, L., 1989, A pyramidial data structure for triangle-based surface description.
I. E. E. E. Computer Graphics and Applications, March 1989,67-78.

DE FLORIANI, L., and Puppo, E., 1988, Constrained Delaunay triangulation for multiresolution
surface description, IEEE Computer Society Reprint (Washington DC: Computer Society
Press). (Reprinted from Proceedings Ninth IEEE International Conference on Pattern
Recognition, Rome, November 1988).

DE FLORIANI, L., FALCIDIENO, B., NAGY, G., and PIENOVI, C., 1984, A hierarchical structure for
surface approximation. Computer and Graphics, 8,183-193.

DOUGLAS, D. H., and PEUCKER, T. K., 1973, Algorithms for the reduction of the number of points
requires to represent a digitised line or its caricature. Canadian Cartographer, 10,112-122.

FRANKLIN, W. R., 1983, Adaptive grids for geometric operations. Proceedings of Auto-Carlo 6,

edited by B. S. Wellar (Ottawa: Steering Committee of Auto-Carlo 6), pp. 230-239.
GOMEZ, D., and GUZMAN, A., 1979, Digital model for three-dimensional surface representation.

Geo-Processing, 1,53-70.
GUTTMAN, A., 1984, R-trees: A dynamic index structure for spatial searching. Proceedings 1984

ACM-SIGMOD International Conference on Management of Data, June 1984
(Boston, MA: ACM), pp. 47-57.

HELLER, M., 1990, Triangulation algorithms for adaptive terrain modelling. Proceedings Fourth
International Symposium on Spatial Data Handling, Zurich, edited by K. Brassel and 11.
Kishimoto (Zürich: International Geographical Union), pp. 163-174.

HUTFLESZ, A., Six, H. -W., and WIDMAYER, P., 1990, The R-file: An efficient access structure for
proximity queries. Proceedings of the IEEE Sixth International Conference on Data
Engineering (Los Angeles: IEEE), pp. 372-379.

Jot ss, C. B., 1984, A tree data structure for cartographic line generalisation. Proceedings
Eurocarto III (Graz: Research Center Joanneum, Institute for Image Processing and
Computer Graphics).

JONES, C. B., 1989, Data structures for three-dimensional spatial information systems in geology.
International Journal of Geographical Information Systems, 3,15-31.

JONES, C. B., and ABRAHAM, I. M., 1986, Design considerations for a scale-independent
caruographic database. Proceedings of the Second International Symposium on Spatial
Data Handling, Seattle, edited by D. F. Marble (Seattle: International Geographical
Union), pp. 384-398.

JONES, C. B., and ABRAHAM, I. M., 1987, Line generalisation in a global cartographic database.
Cartographica, 24,32-45.

KIDNER, D., 1991, Digital terrain models for radio path loss calculations. Ph. D. Thesis, Dept.
Computer Studies, The Polytechnic of Wales. (available from Defence Research Infor-
mation Centre, Kentigern House, Brown Street, Glasgow).

KIDNER, D., and JONES, C. B., 1991, Implicit triangulations for large terrain databases.
Proceedings of the Second European Conference on Geographical Information Systems,
Brussels, April 1991, edited by J. Harts, H. F. L. Ottens and 11. J. Scholten (Utrecht: EGIS
Foundation), pp. 537-546.

KRAAK, M. J., and GAZDzICKI, J., 1991, Triangulation based modelling of spatial objects in
relation to the terrain surface. Proceedings of the Second European Conference on
Geographical Information Systems, Brussels, April 1991, edited by J. Harts, If. F. L. Ottens
and H. J. Scholten (Utrecht: EGIS foundation), pp. 564-572.

MCCULLAGH, M. J., and Ross, C. G., 1980, Delaunay triangulation of a random data set for
isarithmic mapping. The Cartographic Journal, 17,93-99.

MCMASTER, R. B., 1983, A mathematical evaluation of simplification algorithms. Proceedings of
Auto-Carto 6, edited by B. S. Wellar (Ottawa: Steering Committee of Auto-Carto 6), 2, pp.
267-276.

MCMAsTER, R. B., 1987, Automated line generalisation. Cartographica, 24,74-111.

A3-28

www.manaraa.com

Appendix 3 Published Papers

496 Multiresolution topographic database

PEUCKER, T. K., FOWLER, R. J., LITTLE, J. J., and MARK, D. M., 1978, The triangulated irregular
network. Proceedings of the Digital Terrain Models Symposium, ASP/ACSM, May 1978
(Falls Church, Virginia: ASP and ACSM), pp. 516-540.

SCARLATOS, L., and PAVLIDts, T., 1991, Adaptive hierarchical triangulation. Auto-Carto 10,
Baltimore, March 1991 co-Chaired by D. Mark and D. White (Baltimore: ACSM and
ASPRS), pp. 234-246.

SCHEK, H: J., and WATERFELD, W., 1986, A database kernel system for geoscientific applications.
Proceedings of the Second International Symposium on Spatial Data Handling, Seattle
edited by D. F. Marble (Seattle: International Geographical Union), pp. 273-288.

VAN OOSTEROM, P., 1991, The Reactive-tree-A storage structure for a seamless, scaleless
geographic database. Auto-Carto 10, Baltimore, March 1991, co-Chaired by D. Mark and
D. White (Baltimore: ACSM and ASPRS), pp. 393-407.

VAN OOSTEROM, P., 1990, Reactive data structures for geographic information systems. Ph. D.
Thesis, Dept. Computer Science, Leiden University.

VAN OOSTEROM, P., and VAN DEN Boss, J., 1989, An object-oriented approach to the design of
geographic information systems. Proceedings of the First Symposium on Large Spatial
Databases SSD '89, July 1989, (Santa Barbara: University of California), pp. 255-269.

WARE, J. A., and KIDNER, D., 1991, Parallel implementation of the Delaunay triangulation within
a transputer environment. Proceedings of the Second European Conference on Geographical
Information Systems, Brussels, April 1991, edited by J. Harts, H. F. L. Ottens and 11. J.
Scholten (Utrecht: EGIS foundation), pp. 1199-1208.

A3-29

www.manaraa.com

Appendix 3 Published Papers

The Implicit Triangulated Irregular Network
and Multiscale Spatial Databases

CHRISTOPHER B. JONES, DAVID B. KIDNERt AND J. MARK WAREt

*Department of Geography. Uninersifv of Cambridge. Downing Place. Cambridge CB2 SEN. UK
tDcparfinent of Computer Studies, Unitrrsity rJ Glamorgan. Pontypridd. Mid Glamorgan CFS7 IM

UK

The triangulated irregular network (TIN) provides a versatile and widely used approach to representing
terrain models in a way that retains the original sample points, adapts to variation in data density and
incorporates linear features corresponding to natural or man-made phenomena. Classification of the
scale-related priority of the constituent points and linear features can be used to create hierarchical.
multiresolution TIN representations A large proportion of the data Items Included in conventional and
hierarchical TIN data structures are concerned with recording the topology of the triangulation. Although
TINs typically use many fewer points than the main alternative representation of regular rectangular
grids, they do not usually occupy much less data storage, due to the topological data. This paper derrihes
a novel multiresolution storage scheme which uses an approach termed the Implicit TIN, In which storage
requirements are reduced significantly by storing only the vertices and constraining features. TIN topology
is reconstructed by a procedure when required. The Implicit TIN storage scheme has been demonstrated
in the context of an experimental mulliscale database. Variableascale acces is provided to polygonal
regions of a terrain model which includes polygon, line and point objects that constrain the constructed

triangulated model.

Received April 2,1993, revised July 30,1993

1. INTRODUCTION

The rapid growth in the use of geographical information

systems (GIS) has introduced the requirement for terrain

models that combine digital elevation data with natural

and man-made topographic features. Applications

requiring such models include landscape architecture,

civil engineering and radio communications network

planning. A characteristic of many such GIS applications
is the need to retrieve data at different levels of detail,

or generalization, for purposes of scale-variable visuial-
ization and analysis.

A spatial model which can represent digital elevation
data at its original locational precision and can conform

exactly to known linear features, such as ridges, roads

and valleys. is the triangulated irregular network (TIN)

[22] A TIN defines a triangulation for a given set of

sample points. In the absence of linear features, it is

common practice to create a Dclaunay triangulation. It

is characterized by providing the set of most equiangular

triangles [11,23], a property which is desirable when
interpolating within triangles. A Delaunay triangle is

one in which a circumscribing circle passing through its

vertices contains no other points (Figure 1). Sibson [23]

states that for a finite set of distinct data sites, there is

only one locally equiangular triangulation, known as

the Dclaunay triangulation, which is the dual of the
Dirichlct. Voronoi or Thiessen tessellation. This is an
important concept in geographical applications, since a
Thiessen polygon can be used to define the region of
influence of any point in an areal context [20]. in

Figure 1, points 1-6 are known as the Thiessen neigh.
hours of point P.

Since a Delaunay triangulation is dependent only
upon the spatial distribution of vertices, it cannot be
guaranteed to conform to known linear tcatuses that are
defined by subsets of the vertices. However, the triangula-
tion can be constrained, such that the linear features are
correctly represented by a sequence of triangle edges [4],

The main alternative to the TIN is the regular rectan-
gular grid. Although regular grids are convenient for
storage and some spatial data processing operations,
they are not able to preserve arbitrarily located point
and linear data, except at the cost of significant data
redundancy. Some commercial GIS use the TIN for the
primary database and convert to a grid temporarily, in
assist, for example, in visuali, atinn.

For the purposes of multiscale retrieval, hierarchical
data structures based on the TIN have been developed.
The Delaunay Pyramid [6] succeeds in retaining the
properties of Dclaunay triangulation at all levels of
detail. It has been modified in the Constrained Delaonay
Pyramid (CDP) (7] to incorporate linear features cnr"
responding to known structural edges in the terrain.
Differences in resolution or scale between the hierarch.
ical levels of the CDP are determined solely on the basis
of vertical error of a level relative to the highest level of
detail available. If the surface model is constrained by
linear features which represent objects, such as rivers
and roads, the use of vertical error alone is inadequate.
since it will not retain corresponding degrees of general-

TIME COMPUTER JOURNAL, VOL. 37, No. 1.1994

A3-30

www.manaraa.com

Appendix 3 Published Papers

44 C. B. JONES, D. D. KIDNER AND J. M. WARE

FIGURE I. Local Delaunay trinnßulation about a point P.

ization in the lateral displacement of lines. This issue
has been addressed in the Multiresolution Topographic
Surface Database (MTSD) [27]. which integrates the
constrained Delaunay Pyramid with a multiresolution
representation of linear features, the Multi-Scale Line
Tree (MSLT) [15,16].

In creating databases that represent TIN-based data

structures, a large amount of storage is taken up by the
pointers used to represent the topology, such as the
connectivity of triangle vertices and edges. De Floriani
[5] states that the topology of a triangular subdivision
is completely and unambiguously Tepresented by any
suitably selected subset of nine adjacency relations
between entities (vertices, edges, triangles). Referring to
Figure 2, the assumption is that having stored the coord-
inates of each uniquely identified vertex Vn, some addi-
tional data must be stored to define the structure of the
triangulation. Which of the nine schemes is most appro-
priate will depend upon a combination of type of opera-
tions to be carried out on the triangulation and the
importance of saving storage space. For any triangula-
tion of N nodes. B of which are on the boundary (convex
hull), there are 2N-B-2 triangles and a total of
3N-B-3 edges, or 6N-2B-6 directed pointers, if

stored as links from each vertex. For a vertex-based TIN
which references edges, each node's coordinates may be
stored with a pointer to the list of connected vertices

(referred to as a vertex-vertex relation, i. e. I in Figure 2).
If coordinates and pointers require the same unit storage
space, the total storage will approximate to 9N (i e. x, y
and z coordinates for each of the N nodes and
6N-28-6 links). The triangle-based TIN will require
more storage (approximately I5N) since for each or the
2N-B-2 triangles, pointers to the three vertices and
three neighbouring triangles are stored (12N-68-12),
together with the vertex coordinates (3N)"

In contrast to the nine schemes referred to, it is
possible to reduce the permanent storage requirements
of the TIN very greatly by only storing the vertices and
any linear constraints on the triangulation. When the
triangulation, or a part of it, is required for a particular
application, it can be reconstructed temporarily using a
triangulation algorithm. Provided the algorithm oper-
ates on predetermined criteria such as the Delaunay
triangulation and its constrained variant, it is possible
to ensure that the topology of the original triangulation
will be reconstituted. The approach is based on offsetting
storage against computation and is called Implicit
Triangulation. It was implemented originally for the
application of retrieving profiles for radio path loss
calculations from a large, single scale, terrain database
[17]. In this paper we present, for the first time, the
algorithms used to implement the Implicit TIN and
show how they can be applied to create a multiscale

I Vertex - Vertex : Given VI Store V2, V3, V4
2 Vertex - Edge : Given V1 Store E 1, E2, E3
3 Vertex *Triangle : Given VI Store TI, T2, T3

4 Edge " Vertex ; Given El Store V 1. V2
5 Edge " Edge : Given El Store E4, E2, ES, E3
6 Edge -Triangle : Given El Store T1, T3

7 Triangle - Vertex : Given TI Store V 1. V2. V3
8 Triangle - Edge : Given T(Store El. E4. E2
9 Triangle - Triangle : Given TI Store T2.73. T4

vs
FIGURE 2. Illustration of the 9 pos ibk relations between pun of entities Ina TIN Iwhere Vol. reruns; Lit. allies and 7a. tnanRksl.

TILE COMPUTER JOURNAL, VOL. 37, No. 1,1994

w

A3-31

www.manaraa.com

Appendix 3 Published Papers

THE IMPLICIT TIN AND MULTISCALE SPATIAL DATABASES 45

database which integrates ground elevation data with
other topographic features.

By reconstructing a surface from its original vertices

at the time it is retrieved, the Implicit TIN provides the
basis for a versatile approach to building multiscale
databases. In a multipurpose spatial database, both the
type of features to be retrieved and the detail with which
they should be represented may vary from one retrieval
to another. If terrain elevation data are to be integrated
in a flexible manner with ground surface features, it is

desirable to defer the definition of constraints on the

surface triangulation until the features of interest are
defined. Thus the retrieved surface will consist only of
the relevant features. Classification of vertices according
to their importance in reducing error in vertical elevation

and in laterally defined feature representation allows

selective retrieval of those data items that are appropriate
to the application requirements.

In the following sections we start by describing our
current multiscale version of the Implicit TIN, with
reference to the selection of vertices for different scales
and the reconstruction of an explicit TIN within a
spatially defined subregion of the database. This is
followed in Section 3 by a review of multiscale repres.
entations of linear features and an explanation of how
such features can be integrated with the Implicit TIN.
Section 4 describes briefly how multiscale polygonal
objects can be represented in terms of their consituent
linear boundaries. Section 5 describes the design and
performance characteristics of a multiscale topographic
surface database which integrates terrain elevation data
with points, lines and polygons, and composite objects
defined in terms of these primitive spatial objects. The
final section concludes with a summary of the use of the
Implicit TIN and outlines future research directions
related to multiscale geographical databases.

2. THE IMPLICIT TIN

The Implicit TIN provides a highly compact storage
scheme for representing topographic surfaces originally
encoded as triangulated irregular networks. The impic.
mcntation reported in Kidner [17) and Kidner and
Jones [18] stored the vertices of the original TIN in a
regular rectangular cell spatial indexing data structure.
in which vertex coordinates were represented by offsets
from the origin of their containing cell. Reconstruction
of the triangulated network in a query window involves
retrieval or the relevant vertices and execution of a
Delaunay triangulation algorithm. In a comparison or
different methods for storing digital elevation data [17]
it was found that the Implicit TIN was the most space
efficient.

2.1. Vertex selection and initial TIN construction

Given a set of points representing vertical elevations
there are several methods for selecting a subset of points
which can be used to describe the sampled surface as a

TIN with a specified vertical error [19]. The need for
selecting vertices from an original set arises when that
set is in the form of a grid which may have considerable
redundancy, and when certain applications only require
a given degree of accuracy which is less than that of the
complete set of points. The approach used by Dc Floriani
[6] and Kidner [17] is to triangulate initially a small
subset of the original points. This could be known
important points or it could be an artificial set of points
dcfining a surrounding rectangle. Points are added to
the initial triangulation by selecting the vertically most
distant point from the approximating surface, retriangul-
ating. and repeating the process until no untriangulated
point is further than a specified tolerance from the
triangulated surface. Lee [19] favours a more computa-
tionally expensive approach whereby, initially, all points
arc triangulated and points are removed selectively until
no triangulated point can be removed without degrading
the accuracy of the surface below a specified tolerance.
Selective removal of points involves finding for a given
triangulation that point which, after removal, is vertically
nearest to the tetri4ngulated surface. Thus it is an
iterative process in which a single point is only selected
for removal after all other points have been considered
in the same way, involving repeated retriangulation.

2.2. Combining spatial access with vertex priority accts
Methods such as the above for point insertion or removal
enable all vertices of the original set to be ordered in
terms of their significance in representing the surface.
Although it would be possible to label all points with
their priority, if storage requirements are an important
criterion it may be preferable to place vertices into
classes defined by an associated limiting error. Using
this layered hierarchical approach, the vertices required
to reconstruct a surface are those belonging to classes
with an error less than or equal to that of the retrieval
criterion. Vertices or each layer of the hierarchy may
then be segmented spatially to facilitate the search
process required to rebuild the triangulation. If the
vertices belong to a spatially extensive database, spatial
segmentation is also required to enable efficient retrieval
of an areal subset or the data.

The ideal spatial access scheme, given priority-ordered
vertices, would be one which combined spatial indexing
with scale-related, or priority, indexing. Efficient spatial
indexing depends upon being able to group together in
storage those points which would also be grouped
together in space. Having clustered data in spatial terms
they cannot simultaneously be clustered with equal
efficiency with respect to scale priority, since a cluster
based on scale priority could not be expected to be
clustered in space. In practice therefore it is necessary
to compromise. The solution adopted here is to give
preference to the spatial indexing, using a quadtree
directory, but to introduce a hierarchy of spatially indexed levels where each level corresponds to a prespe.

TIIF COMPUTFR JOURNAL, VOL. 37. No. 1,1994

A3-32

www.manaraa.com

" Appendix 3 Published Papers

46 C. B. JONES. D. B. KIDNER AND J. M. WARE

cified vertical error associated with the surface. The
highest level cells contain all vertices required to recon-
struct the triangulation to the lowest level of resolution,
i e. largest error. The next level down the hierarchy
contains the additional vertices which, when combined
with those in the higher level, would reconstruct the
surface to the second resolution level. Thus each lower
level provides the additional vertices required to reduce
the surface error to that corresponding to its level. This
approach is comparable to that used by De Floriani in
the Delaunay Pyramid. except that here we do not store
a triangulation and we do, unlike the latter scheme, use
a spatial index for each level. A closer comparison is
with the methods used for the purposes of multiresolu-
tion storage of lines by Jones and Abraham [16] and
by Becker et at. [3].

2-1. Structural and non-structural lines

Before considering algorithms for reconstructing a trian-
gulation from an Implicit TIN it is necessary to consider
the linear features that may act as constraints on the
triangulation. Linear features that are combined with
terrain models fall into two categories. There are those
which are structural in the sense that their use as
constraints in a terrain model will improve the accuracy
of the model in describing the form of the terrain. These
lines describe phenomena such as ridges, valleys and
breaks of slope. We include in this category any lines
that describe physical objects. Roads, rivers and the
outlines of buildings are notable examples. Other, non-
structural lines are those that may be used to constrain
the triangulation to facilitate visual display of the surface.
Such non-structural lines could, for example, represent
administrative boundaries. In sonic circumstances these
boundaries might coincide with structural lines.

The significance of this distinction is that when struc-
tural lines are inserted in a topographic surface database,
their vertices can be added to the terrain model data
and the lines designated as necessary constraints. Non-
structural lines can be distinguished as such and they
only act as constraints when a particular query requires
their presence in the retrieved model.

If linear constraints are to be imposed on a multiscale
surface representation it is desirable to be able to control
the degree of detail of the line descriptions. Ideally this
should be comparable with that of the digital elevation
model, but this is not always possible if there is a
mismatch in the levels of detail of the original datasets.
The MSLT provides a means of representing the vertices
of linear features in a similar manner to that used in the
multiscale Implicit TIN (see previous section). The
MSLT is described in more detail in Section 3.

2.4. TIN reconstruction with linear constraints

The effectiveness of the Implicit TIN depends upon the
ability to reconstruct the original triangulation by means
of an algorithm which operates on the relevant vertices

and associated constraints. It is important to ensure that
when only a part or the surface is being reconstructed
(which will be the normal case for retrievals on an
Implicit TIN), all of the relevant vertices and constraints
are found. Note that if only a subsection of the original
surface is required in a given spatial window, some or
the relevant vertices of triangles crossing the border of
the window will lie outside the window.

2.5. Extensive region triangulation
We now present an algorithm which will reconstruct a
constrained TIN for a given query window. The algo-
rithm starts by using the query window to generate a
list of quadtree addresses (Figure 3). These are used to
access the relevant elevation points and constraining
objects. It should be noted that all geometric data
defining objects referenced by quadtree cells are
retrieved, not just geometric data that intersect the query
window. The object data, that may consist of polygons,
linear features or points, are reduced where appropriate
to a list of edges, the constituent vertices or which are

aý ý+ý,; .

,Y

(a)

(6)

FI CURE 3. la) The query rcpinn with nnpect In the dathhaor
(h) The quadiree cells land date) accrued in the database.

Tim CoMruTrR JOURNAL, VOL. 37, No. 1,1994

S

A3-33

www.manaraa.com

Appendix 3

Tier Iniri i<ir I IN AND MUL 1IS(Ail SIAIIAL I)AIAHASI S

stored, along with the height vertices, in a main-memory
based 'box-sort' data structure (Figure 4). This regular
grid structure provides spatial indexing in the course of
triangulation [20].

The correct constrained triangulation is obtained
in two stages. First a Delaunay triangulation of
all relevant vertices (from elevation data and
constraining objects) is performed see Procedure
DELAUNAYTRIANGIJLATE). Points that are
interior to the query region will alwavs belong to the
final triangulation, so initially these points are put onto
a stack of points to he triangulated The f hiessen

neighbours of cacti point CURRENT
_P01NI on the

stack are then found in the following way. The nearest
neighbour, NNB, ref CURRENT

_
POINT is deemed to

be the first Thiessen neighbour. The Thiessen neighbour
K to the right of the edge (CURRFN"E POIN I. NNI))

is then found and added to the list of Thiessen neigh-

*lI
Iý r

rýl'

(a)

.1,

hr urti I he 'I hiessen neighbour to the right of the edge
IU) RRFN F POINT, K) is then Grund I he process is
repeated until the latest neighbour is equal to the original
neighbour. 'I he search for l hiessen neighbours utilises
the box-sort data structure, such that only local pants
within the neighhourhnud of it Delaun: n edge are tested
IIr wever, if the search for triangle vertices includes but
. %x[cells which are empty (lie outside the generated
yuadtree region) or extents heyond the hux-sort c, -ter
age, the necessary quaritree cells to the database inter-
accted by the local search region are accessed and tire
vertices are retrieved (Figure 5)

-I lie triangulation of all vertices within the query
region will not guarantee a coniplete II N coverage over
that region I here may he situatu, n, where part of the
query window is not covered. p: uuiularly to its corners
where st t)elaunay edge crosses the wrnu�ww hut lath its
vertices are outside (Figure O Whencvet su. h an edge
is fount), both its vertices are added it, the stack rd
vertices to be triangulated Thus when the triangulation
is complete, triangles will have been constructed nn loth

sides of all stach edges (Figure 7) I his process intnoduves
unreyuiretl edges, which can either he ret. rined or dtv

carded Such Qn edge IS rtrsttnltuiýhcd freit Other algae
by the [act that one (if its endpoints has ri neighhnur
I lie Procedure is illustrated in Virtue X

the second stage of tile triangular it'll plokew 1s to
insert the linear amstraints of all r harts trhrrh lie

Ifu. Sort Gnd (eL 1 IXlau ay Seach

(, kr, Md by c ,. aýId of k., - d p,)

f
l.. WIIul Rrpnn

I IAU N, w Alran m Mmnwy)

r'. ý
'...

(carry RrRnri
ai.. r Meta in Mrmuy

lul

(b)

FIGlR IF 4. (a) A Mrunnmk rectangle placcd around quadtrec
irllý IN The initial hurt -surrt data uructnrt with refercncnl and erupts

cells

lhµltre. " f rlh to M Add, '1 li" lran h

... ýý..... Mý' Uýu 1.4w in Mt+m"r

"
Cl

1r, ý1 [hu (brrtnllymMrrnr"(b)

FI(. t RF. S. Inl Ihr aarch for rm, rý eurnd, Ivs ýt) urr qýýrn
ltpiuu I hl Ihr starch rrpurn n rnaplyd url5, yu. 1Jlrr. addrt.. r. L.,

-- ---- --- --- ------- IIP llMPU FUR JIIURNAI., Vui 37. No I, 1 VV4

ý 1r, ý1 [hu (brrtnllymMnný. y

Published Papers

A3-34

www.manaraa.com

Appendix 3

48 (B JON FS, I). BKII)NRAN ANI> J. M WANI

within or intersect the current TIN (sec Procedure

CONSTRAIN TRIANGULATION). Fach con-

straining segment (A, B) can have one of five possihihties

(i) A and B are both vertices within the TIN and form

a [)claunay edge, (ill A and B are both vertices within

the TIN with no connecting edge, (iii) either A or B is

a TIN vertex whilst the other is external to the TIN,

(iv) both A and It are external to the TIN, or (v) any of

the cases (iii Iiv) but where the constraining edge passec

through a hole or concavity in the triangulation The

first two occurenccs are the most likely, but the prohabil-

itie, of each will depend upon the sampling densitics of

the elevation and object data In the first instance (r),

the segment exists within the T-IN and therefore no

update is necessary. In the other cases, the segment does

not exist and therefore the TIN must be constrained

(Figure 9)

For case (ii), the procedure for inserting an edge
constraint (A. 13) into the TIN consists of determining

the current edges which are intersected by the constraint
(I"igure9a). eliminating these edges (Figure 9b),

re-triangulating around the new edge (figure 9c) and

updating the TIN data structure It may he noted that,

initially for case (n), there will always he one or more

current edges that are intersected by the constraint (A, 13)

since this region will have been triangulated initially as

Published Papers

it is within the original query window (nlhervise A or
lt would he external). 'I he noblem of re 111ungulating

around the constraining edge is reduced to that of

separately triangulating the two polygons lorrned either

side of the edge These polygons are sometimes refcrrrd
to as the polygons of influence j 71 '1 lie triangulation

of each polygon proceeds a% folllow% (omlder the edge
(A. It) to be the base edge of the polygon I he Initial

step Is to find the vertex O of the polygon. dlscliunling

the vertices A and It, which subtends the Iargesl ankle
t, - the base edge lot the topper hoIvgon to I gore Vital

thu is vertex 5 11115 vertex is ldded I" the list of

neighbours of both A and It. and suntlartu A and It

become neigh hour'. ref vertex S Iwn sill, feiii lms h: nr
now been formed Willi hate edge A. St and (S. 11)

respectively (Figure 10h) the Iwo stub tv lsFm ns, and
any subsequent sub-polygom, are dellt Willi. recursively.
to the carne way as the longtnal hlelygun II rkures Ilk

and (1) 1 lie recursion ceenunues until the Lotest new edge

marches an edge Iit the anginal I IN

I- or a constraining segment will, uni vertex In the
I IN and a second outside, the procedure is %cn snnil. li.
hol triangle edges may extend too voices eeutslir the
original I IN For example, c mvder the m%cili 1n ý, l the
highlighted segment (A. HI in I spure I Ital Ito' thl"
search for the vertex with the taugest suhtrndrit angle
must Include the vertices muklny uh the 1e dlsgim ich
Influence (discounting A and It) plus all vritlccs whrrh
: tic external to the TIN heut he within the Irlelugien of
nlluence (Figure IIh) Searches invoking tills side

scyuent sub-polygon raust In tide the sei lice'. making
ill the sub-polygon Idlscuuntrng the hose edge serlurs)
plus any vertex which is external to the IIN hill lies
within the sub polygon the revulsive procedure' In tills
case continue,, until either the latest edge matches an
edge in the original 'I IN (it the latest edge falls to
Intersect the original '1 IN (figure 110

The fourth possible situation is where hlilh sauces of
the constraining edge lie outside the tuitional [IN the

procedure fur constrained edge Insertion Bellows that of
the Imcrtuon of it constraining edge Willi ('lie rXICIIIA
vertex (Logure 12)

the Implicit TIN algorithm will somcumrs landurc
triangulations containing holes due to triangles creesslng
concave regions of a query window 1 kills the elgonlhm
has been designed to handle quern wlndlews tllar are
themselves concave tit shape or Include a hole
Introducing a constraint which passes through such a
hole or concavity can he catered for by using the
methods for cases (iii) and (iv), as shown In I igure

2.6. Restricted region triangulation

It is noted that tr, aonptruct the Imphcu TIN Irr airs
query, the algorithm rcqurres an initial vcrtct tu start
the triangulation process In most cases an arhrlrarv
vertex from within the query rcfrtrrn is choven II rwcver.
to certain circumstances. no verttcc, he within the irrmal

lIll' COMP UIIlk JOUIt NA I. VOL. 17, No I. 1994

A3-35

IF IGI N16. ILr II. I IV II., I-O iIII lliIn" wiihulII yu, I
rcglll I, I NIOte III,. [Is VIII t¬tl1I ltIt'If If1 IIIC 15.11, X511 lulu

of n-

IICIHF71 in inI ui, nigul. iiýýýn A quer, ic'nýn

www.manaraa.com

Appendix 3 Published Papers

THE IMPLICIT TIN AND MULTISCALE SPATIAL DATAEASE$ 49

u iangulated
Region

(a) Extemal Edge lntersecton.

I

(c) Removal of unmquired edges.

FIGURE S. Test for complete coverage and resolution of completeness by triangulation of external vertices

query window. This situation may arise if the query
window is narrow or has no width as in the case of a

profile. In such a case the initial vertex can be found in

a number of ways. One method is to find the nearest

neighbour of the centre of gravity of the vertices defining

the query region. Another method is to search for

straight line segments (constraints) belonging to linear
features that cross the query window and to select one
of their bounding vertices. This would have to act as a
preliminary method in that it will of course only work
if there is an intersecting constraint. Having found an
initial vertex, the algorithm proceeds by finding its
Thiessen neighbours and testing whether the connecting
edge to each neighbour intersects the query window. If
it does, then the neighbour is placed on a'to triangulate'

stack. If no connecting edge crosses the window,
another vertex in the vicinity must be selected and the

procedure is repeated. Once a vertex of an intersecting

triangle edge has been found, its neighbours across
the window can be processed in the same way. All

such opposite neighbour vertices are then processed.
The remainder of the algorithm finds any unprocessed
border triangles in the same way as in Procedure
DELAUNAY_TRIANGULATL". The case where no
intersecting edge exists, when the query region is com.

pletely contained within a Delaunay triangle, is also
catered for. This is achieved by simply finding the
Thiessen neighbours of the vertex closest to the query
region. One of the triangles thus formed will contain the
query region.

3. MULTISCALESTORAGE OF LINEAR
FEATURES

There are several published descriptions of multiresolu-
tion schemes for representing lines. Examples of these
are the strip tree [2]. the MSLT [1S. 16]. the Reactive
Tree [23] and the Priority Rectangle (PR) File [3]. The
original strip tree includes no facility for efficient spatial
access and Is therefore not satisfactory for use in a large
database.

The MSLT does provide spatial indexing and it is
intended for large databases. Like all of these schemes
it uses a line generalization algorithm (that of Douglas
and Peucker [8]) to simplify linear features. The algo.
rithm is used to classify vertices of a line according to
their scale significance or contribution to the shape of
the line. A hierarchy is then constructed in which. at the
top level, all vertices required to represent the line in its
most simplified form are stored. At the next level are

TIIE COMPUTER JOURNAL. VOL. 37, No. 1,1994

A3-36

(6) Triangulation of Eatemal Vertices.

www.manaraa.com

Appendix 3 Published Papers

50 C. B. JONES, D. B. KIDNER AND J. M. WARE

FIGURE 9. Constrained edge insertion within a TIN. Insertion

of a constraining edge AB involves finding existing edge% that

intersect it (a). deletion of these edges (b) and re-triangulation to

include AB as an edge in the triangulation (c).

stored intermediate vertices which when added to those

at the higher level would represent the line to a prespeci-
fied lateral error tolerance. Subsequent lower levels

provide further degrees of detail. Abraham [I] imple-

mented several spatial indexing methods whereby each
level of the hierarchy could be accessed on the basis of
a specified spatial window. For a given level of detail all
spatially relevant parts of the levels down to and includ-
ing that level need to be accessed. The retrieved vertices
are then reassembled to constitute the linear feature at
the required resolution. The MSLT spatial indexing

method subdivided vertices into rectangular cells, based

on a quadtrec. The scheme carried a storage overhead
due to the fact that each cell included boundary vertices,
which were spatially located outside the cell's (spatial)

extent.
The Reactive Tree of van Oosterom [25] uses an

R-Tree spatial index [12] to refer to the occurrence of
linear features which are stored separately in a hierarch-
ical (hut not spatially segmented) data structure, the
BLG-tree, which provides access to the scale-classified
vertices of the linear features. The BLG-tree is then
traversed to the level of detail required. Efficiency of this

approach is dependent upon required linear features not

ýý
z

S6

s
i. ý

ýýý
s

A
SF

ß

(61

A04

(/1

FIGURE 10. Triangulation within a polygon around a
constrained edge. The inserted edge forme the base of Iwo polygons
to be triangulated IU. Triangulation of each polygon proceeds by
selecting the vertex which sublinde the largest angle with the base
edge (vertea S in b). Each new edge is treated recursively as a bete

edge of a new polygon (c). Triangulation is completed to, each
polygon when the edges from the selected vertex to the hose edge

belong to the original triangulation Id).

being greatly spatially extensive beyond the region or
the spatial query window, since the ßLß-tree requires
accessing the entire line which may subsequently be
clipped to the area of interest.

The PR File [3) is more closely related to the MSLT
in that the vertices or linear features are separated into
spatial units which are present at different levels of detail
(or'priority'). It differs however in that the spatial units
are minimum bounding rectangles of arbitrary subdivi.
sions of the stored line and are indexed using an R-Tree
related scheine. This reduces problems of boundary
vertices, though the scheme appears complex to
implement.

In our application of the Implicit TIN we have
adopted an approach which takes aspects of the MSLT
and of the Reactive Tree in order to reference line
features. Like the MSLT (and Becker er al. 's PR File)

UP CON PUI ER JOURNAL. VOL. 37, No. 1,1994

A3-37

www.manaraa.com

Appendix 3 Published Papers

THE IMPLICIT TIN AND MULTISCALE SPATIAL DATABASE% 51

B

A

(a)

vertices not in nN. but lying wiiM n the
polygon of influence we included In the
sea" for Q.

0010

A

(b)
Dose edges do not inteneei the
o igmal TIN. so recursive process
is stopped.

A
(C)

FIGURE 11. Insertion of an edle with one external vertex two test for explanation).

(a) (b)

FIGURE. 11.1 anion of an edge with two external vertices A and R (a) follows the procedure for Insertion of an edge with one interns)
vertex. to result in the conxtrained triangulation (b).

"ýB

A

(a)

ý.
(6)

FIGURE 13. Insertion of an edge through a hole in the tnangulahon or & concave query window. Triangulation or the eon training edge
AB la) continues within the polygons of influence until new base edges either belong to the original triangulation or do not intersect The query

window (h shows the triangu lation of one aide of AB),

vertices are classified into hierarchical levels. Since these 4. POLYGONS ANI) MULTISCALE LINEAR

vertices may be a necessary part of the terrain model. FEATURES

each level stores lists of the sequentially numbered line Storage or polygonal objects is achieved by subdividing
vertex identifiers. The corresponding coordinates are each polygon into linear components representing their
stored separately. The lists are not themselves spatially boundary. In doing so. it is possible to avoid unnecessary
segmented. though their presence is referenced by the data duplication, since for a map entirely covered by
quadtree spatial index. polygonal regions, all boundaries interior to the map

Tue COMPUiF.. R JOURNAL, VOL. 37, No. 1,1994

A3-38

www.manaraa.com

Appendix 3 Published Papers

52 C. B. JONES, D. B. KIDNER AND J. M. WARE

will belong to the two adjacent polygons which share
the linear boundary. Provided that polygon representa-
tions are reduced to lists of linear boundaries, the linear
feature multiresolution storage scheme described in the
previous section can be used. Multiscale representation
of polygons can then be achieved by a combination of
a polygonal object description which refers, for a particu-
lar scale of representation. to the relevant linear compon-
ents, and the multiresolution representation of the linear
components themselves. Retrieval of a particular repres-
entation is accompanied by a check for topological
integrity of the polygon, which may have been violated
by the line generalisation procedure. This is then cor-
rected by inserting additional higher resolution vertices
in the linear boundary representations (Figure 14).

S. A MULTISCALE DATABASE

In this section we describe the components of a multis-
eale database which applies the Implicit TIN concept to
the storage of points, lines, polygons, complex polygons
and composite objects constructed from these spatial
objects. All of these spatial objects are regarded as part
of a terrain model, which we refer to as the topo-
graphic surface.

The objective in designing the database was to enable
subsets of spatial objects that are part of a topographic
surface to be retrieved at variab)? levels of detail deter-
mined by the scale of the required output. The assump-
tion is that for large scale (detailed) retrieval the
geometry will be required at higher resolution than for
small scale retrieval. It is also assumed that the actual
objects retrieved will be required at larger scales and,
furthermore, different types of object will be required
according to the purpose of the retrieval. In a geological
context, finer subdivisions of geological formations might
be represented at larger scales along with classes of
geological unit that were relevant to particular types of
mineral exploitation. In the context of local government
planning the boundaries of individual land parcels or
planning regulation zones might be required along with,
for example. the proposed path of new roads.

All geometric objects in the database are defined in
terms of component points. Individual points are identi-

fled uniquely and may be regarded as belonging to both
the terrain surface and any point or linear or polygonal
features on the surface. When a point is inserted into
the database it is allocated a level which characterizes
its priority or scale significance. This priority is deter-
mined by a combination of two factors. One is the
importance in defining the geometry or the terrain
surface and the other is in defining the geometry of any
objects mapped onto the surface. Methods for determin-
ing the priorities were described Section 2.1 and
Section 3.

Spatial objects representing phenomena mapped onto
the terrain surface are viewed hierarchically. Thus point
objects are defined geometrically simply by reference to
a single vertex at a specified level; linear objects are
defined by ordered lists of vertices which may occupy a
specified range of levels; simple polygons are defined by
lists of bounding linear objects; complex polygons are
defined by lists of component simple polygons (a primary
external bounding polygon and the internal bounding
polygon, i. e. holes). higher level objects defining various
real world phenomena are then defined in terms or the
constituent points, lines or polygons.

In the implemented database, all spatial objects and
all component vertices are indexed by spatial location,
using a quadtree directory, which is itself organised in
levels corresponding to levels or storage of the geometric
coordinate data. Each cell of the quadtree directory
references the objects that intersect it. The number of
objects per quadtree cell has been chosen somewhat
arbitrarily as 5. The purpose of the experimental data-
base is to provide a framework for demonstrating the
multiscale Implicit TIN and no attempt has been made
to optimise spatial indexing. It may be remarked how-
ever that the quadtree indexing scheme is similar in
principle to the PMR quadtree (21]. which has perform-
ance characteristics that are competitive with other
major alternatives [13].

Queries to the database are answered by accessing
the level or levels appropriate to the specified 'scale' or
resolution. At any given level, all objects from the
coursest scale down to that level are recorded in the
spatial index. Thus having entered the database at a

Before ̀eneralsation. After genenlwtion " an Solmion Is to replace intenecbon of hie aetmen u appropriate point or poinm has occumd.
FIGURE 14. Fxample of error which may occur duonft line simphficaiion and how the error is corrected

TIIP. COMPUTPR JOURNAL. VOL. 37. No. 1.1994

A3-39

www.manaraa.com

Appendix 3

iu Incrl. lcir TIN ANI) MU I, l IS('A 1.1 SPAI IAI_ DA IAli AS IS

particular level, retrieval of the geometry for selected

objects is achieved by accessing the range of levels from

the highest recorded for the object down to the current
level. Since adjacent quadtree cells may reference the

same (non-raint) objects if they lie in both cells, it is

necessary to keep a temporary index of already accessed
objects for any particular query. in order to prevent
duplicate retrieval of the associated geometry The TIN

construction algorithm is applied to the combination of

vertices and constraints retrieved for the specified spat-

ial window
The experimental database consists of a set of indexed

tables with variable length records. An overview of the
database tables is given in Figure 15, which we will now

explain. The database represents the multiresolution
topographic surface by it sequence of levels where the

top level is the coarsest resolution and (lie hot loin is the
finest resolution The Levels Table has an entry for each

such level and records the level number, the maximum
vertical terrain height error associated with the level and
the maximum lateral (ground location) error associated

with linear features which may be embedded within the
level and hence constrain the triangulation

There are two quadiree tables at each level of the

database. The Object Quadtree Table records, for each

quadtree cell. the list of the spatial objects (or features)

that lie inside or intersect the cell. The PointQumidrrem

1af le stores the point identifiers of the points that lie

inside its respective quadtree cells The reason for main-

taining separate 'object' and 'point' quadtrces is due to

a distinction between real world objects with name and

class attributes and the lower level point geometry used

to describe the objects Many points will rnlN he used

11 k

for describing the ground surface and will not be part
of the boundary of objects mapped onto that surl, rce

The Point 7ubles, of which there is one for each level

of the database, steife, for each vertex, its point ruentiher
and x, t and z coordinates Vertices that nieline linear
features that are not regarded as essential to dclinurk
the form of the terrain model are assigned a null z v; rlur
When combined with terrain Li, rta their z cueuelrnatrt
are inferred from the terrain elevation data

The Ohjerr Tables, of which there is one for each level

of the database, have an entry for each object at the
corresponding level referred to in the Object Ouadtree
Iahles Oh)rcts may he composed of polygons, linear
features and point features, The data items for cadt
object are its 'real world' classification and lists of
references to its component polygon, line ; und point
features Note that Point objects refer directly to the
Point 'fahle where the coordinates are stirred Clearly
tip to two of these lists could he empty if It consisted of
only one type of spatial geometry

l he Polygnu Feature Tables, with one table per data
base level, store the polygon identifier and u list of the
identifiers of the linear features which compose the
polygon

I he Linear feature l ahlrs, again with one per level
of the database, contain the linear feature ufentitict, the
highest level of the database in which it is referenced
and a list of the point identifiers and their sequence
numbers within the line Fach such fahle only %tore%
the identifiers of the vertices which are introduced at
that level t hits to onstruct it linear feature at a given
level, it is necessary to access all Linear f raturr I: rhlrs

Ewes l abk

vcl number.
Imum venlcil crux almum

Item cmx

Tnan Ic TRblc

runpk &nUhCý.
Venea I wknuf-.
Venrx 2 idenufia
Nolen 1 e-uf-

L. 1 nl al[nIhulc knllfien

FIGI'NF 15. (her-. of Ihr Mulnccale 1)aIabazc oll ih, ' inclancc with Ihrer lenrlt OI detadi

_____I
)IF (IIMPU 11

_R
JOURNAI I. VVI 17, No I, 1994

Published Papers

A3-40

www.manaraa.com

Appendix 3 Published Papers

54 C. B. JONES, D. B. KIDNER AND 1.. M. WARE

from the highest level of occurrence down to the cur-
rent level.

The Triangle Table is used to record the form of
explicit triangulations stored temporarily as a result of
triangulating the Implicit TIN. It records for each tri-
angle, the triangle identifier, the Point identifiers of its
three vertices, and attribute identifiers that may be
associated with the triangle. Such attribute identifiers
are assumed to be obtained by the triangle taking on
the classification-related properties of any polygons of
which it is a member.

5.1. An application to geological data

Figure 16 shows the Implicit TIN output produced when
the algorithm described in Section 2 is applied to a small
implementation of the database design described in
Section 5, using an L-shaped query region. The test
database consists of 20 objects comprised of 13 geolo-
gical outcrop regions and seven geological faults. The
outcrop regions arc defined by 20 polygons, while there
arc a total of 143 linear features used to define these
polygons and the fault lines. The terrain surface is
defined by 612 points, while the constraining features

are defined by 967 points. The quadtree cells have a
maximum of five objects and five points per cell, respect-
ivcly, for the two types of quadtree. Two levels of detail
arc shown to illustrate the differences in the amount of
data relevant to each level. The first level (Figure 16a
and b) was created with vertical and horizontal toler-
ances of 10 m, while the second, more detailed level was
created with vertical and horizontal error tolerances of
5m. There are 45 retrieved points (14 for the terrain
elevation and 31 for the linear constraints) for the query
window at the first level and 77 points (21 terrain and
56 linear constraints) at the second level. For each or
the two levels, a complete triangulation of the corres-
ponding part of the database is also shown (created
using the conventional constrained Delaunay triangula-
tion algorithm of Dc Floriani and Puppo [7]). There

are 891 points in the more detailed representation (part
of which is shown in Figure 16d) and 587 in the less
detailed one (Figure 16b). Inspection of Figure 16 shows
that the Implicit TIN produces the same triangles as
those in the conventional TIN.

5.2. Database performance issues

One of the major advantages that an Implicit TIN
system holds over an explicit TIN system is the saving
in storage space. The Implicit TIN database scheme,
described here, when compared to an equivalent explicit
TIN database using triangle adjacency pointers, has an
approximate storage saving of

i 12N, -6B, -12
1-o

where there are (m + 1) levels in the database and a total
of N, points (from elevation and linear features) in the

reconstructed TIN at level I. B, of which are boundary
points. The assumption is that the explicit TIN database
stores multiple versions or the triangulations. I. e. one for
each of the m+1 levels. Storage costs for the explicit
scheme include an additional element proportional to
3N to represent coordinates of the points or 4N if we
assume that a unique point identifier is also stored for
each point. Further storage is required for the definition
of objects in terms or their geometry. If the object
definitions are stored as lists or point identifiers and
their sequence numbers, an aproximate upper limit on
the storage required would be IN. Thus SN is an
estimate of the storage required in addition to triangula-
tion topology pointers. For the Implicit TIN there is no
triangulation topology, other than constraints, thus SN
is a measure of the storage costs for this scheme.,
Regarding the size of B,, it is determined here by the
number of points on the convex hull and remains a
constant for all levels of representation. It is usually
small compared with N. Thus for a single level of storage
the triangulation topology approximates to 12N and the
relative size of the Implicit and Explicit TIN scheme is
in the ratio 5/17. As the number of levels increases, the
overheads for the explicit scheme increase significantly.
Taking the example of five levels of storage each of
which involved a reduction in the number of points by
two-thirds, the overhead would amount to about 30%
of that of the of most detailed level, i. e. in proportion to
6N. In this case the ratio of storage between Implicit
and explicit schemes would be 5/23.

lt is important to note that storage saving is not the
only justification for using the Implicit TIN. The
approach provides flexibility in integrating selected topo-
graphic features with a terrain model at user-specified
levels of detail. Thus the constraints introduced by the
selected topographic features are not predetermined, as
they would be in a stored constrained explicit TIN.

The usefulness of the Implicit TIN will depend, for
many applications, on the ability to reconstruct the
correct constrained Delaunay triangulation for a given
query region within a satisfactory time, the length of
which will relate to the specific needs of the particular
application. The major time penalty introduced by the
Implicit TIN system is that of having to reconstruct the
constrained Delaunay triangulation from the main
memory data. The reconstruction algorithm currently
used in the system has a worst case time complexity of
O(N log N), where N is the number of points (elevation
and linear feature data) to be triangulated. This repres.
ents an upper bound on time for any serial Delaunay
triangulation algorithm (constrained or unconstrained),
although some parallel algorithms improve on this, with O(log N) reported by ElGindy [9]. Early experimental
results indicate that a satisfactory reconstruction time is
achieved. For example, the CPU time taken to produce
the triangulation shown in Figure 16(c) is less than
250 ms.

Tim COMPUTER JOURNAL. VOL. 37. No. I. 1994

A3-41

www.manaraa.com

Appendix 3 Published Papers

THE IMPLICIT TIN AND MULTISCALE SPATIAL DATABASES 55

FIGURE 16. (a) and (c) show the triangulations produced by the Implicit TIN algorithm when applied to two levels in a muhncale

geological database; 01 and (d) are the triangulations for the some area produced using a conventional triangulation alponthm.

6. CONCLUSIONS AND DISCUSSION

The implicit TIN is a space-efficient triangulated data

storage scheme that has considerable potential for rep-
resenting topographic surfaces in a multiscalc database.
For the purposes of representing only elevation data it

can provide a highly compact storage scheme. By classi-
fying vertices according to their scale-related priority, it

can be combined with a multiscale representation of
geographical objects defined by polygons, lines and

points, which are embedded in, and act as constraints
on, the triangulation of the elevation model. The vertices

defining these objects are themselves classified according
to their scalc-related priority, allowing them to be
combined selectively with the elevation data when a
particular scale or representation is required. A scale of
representation can be defined at least partially by the
vertical error tolerance associated with the elevation
model vertices and the lateral error tolerance or any
additional features.

Retrieval of an explicit triangulation requires applying
a constrained triangulation algorithm to the terrain and
associated objects relevant to the spatial query window.

TNH CUMPUTHR JOURNAL, Vor. 37, No. I. 1994

A3-42

www.manaraa.com

Appendix 3 Published Papers

56 C. B. JONES, D. B. KIDNER AND, J. M. WARE

Execution of the algorithm inevitably introduces a time

overhead in retrieval from the database. Whether this is

acceptable will depend on the application. Having built

a model from the database components it is envisaged
that it will be retained at least temporarily for purposes
of analysis and visualization. How long it is worth
retaining a triangulated model will depend upon the
time taken to create it. Clearly actual retrieval times will
depend on the quantity of data and the speed of execu-
tion. The introduction of parallel processing methods to
triangulation can be expected to improve performance
in the future [9,26].

The major benefits of the approach are the storage
efficiency and the flexibility it gives in integrating relev-
ant topographic features with a digital elevation model
at user specified scales.

M ultiscale databases for geographical information sys-
tems raise many challenging issues relating to the integ-
ration of data of different quality from different spatial
models and to the automated generalization of the
retrieved data.

When several spatial objects are retrieved and integ-
rated in a model which is at a smaller scale than that of
the original data, major problems can arise in visualising
the model such that its components arc clearly repres.
ented and distinguishable. This requires symbolizing the
original geometry in ways that may involve simplifica-
tion, exaggeration and change in location, all of which
are aspects of cartographic generalization. Such general-
ization operations may be applied to data following
retrieval from a multiscale database.

Update of a multiscale database is potentially a com-
plex process in that, for any given spatial region, new
data may be at different levels of detail from that already
stored [14]. If the source scale of new data is the same
as existing data the new data may replace the old, unless
a temporal record is required. If it is more detailed it
might replace existing data, though if the new, more
detailed data were highly localized, relative to existing
data, it might be appropriate to maintain it additionally,
without replacement. Likewise, less detailed data might
also be maintained additionally if it provided a poten-
tially useful generalization, perhaps over an extensive
region. Such multiple representation is particularly relev-
ant if there are no satisfactory automatic means for
generalizing the data.

The multiscale database described in this paper is
applicable to the storage of spatial objects that are
defined in terms of their original surveyed geometry, or
simple subsets of it. This is currently applicable, but full
exploitation of the multiscale database will depend on
the implemention of more advanced update and general.
ization procedures that enable data from multiple source
scales to be integrated and to undergo major generaliza.
tion transformations on retrieval.

ACKNOWLEDGEMENTS

This research was partially supported by SERC grant
GR/F92688 and by the Ordnance Survey. J. M. W. was

supported by an SERC CASE studentship in collabora-
tion with the British Geological Survey.

APPENDIX

ºRard. w CONSTRAIN_TUANGlM11ON

r. . &I. 0 0 ryl dVAb
N. pýid*U 41 MIM i1N. M

M my W plot . m& Irw 1 w. mm YN. V1 Y+wK1 Y.. dir (A. II M/Y{ "
weal d MAMwe Yom AdM pM d Inrnarm (YA Mn. nMY
w. wV 1 üy VAn. Yry1. MYwil, wwrry Y wiM IIMrýnR

DrYft mh poim', b4wwýq (V .
sp. w. "m mm t. a sl $2.. i$ iew. Wr$ p. Vm MK aa.. d. W IA. n
Sod sl w1N, wp 1a lmm. dkw dNYnr km A.
tM S! wM wýj. d b Mwrtýlon AYUM Yp11 U
Add AY 1M YN d wlp*e. w d.
Add 9 O11r IMd M. 4 M WA.
T1IANGUL I PO1. YGON(A. I. $1).

wunUANCULATIJ'o1.
YGdap. A, 17R

relee

hendY . 7W M10UA71JO1. YGON(? I. N. 4

ºbd dl p. *, 41b, w4MTMWNd w 40MWf~plyp r44 MY.
5rdh 1. nd V k. Yv peld Q uh brw IWwd. e . M1. b. ap al. ºA
11 Q4 d-dyl iiN IWn

Add Q to T1N.
IMII
Add NWM Ill d -10 uO IQ
Add Hb IMMMd10, IQ
Add Qbw 14 d. l i14 d º1.
Add 0b1. lMt. (/*-. f PL
1101 I14.

b bl RI. 01YýelwýAl Mw1ýW1 im. ww
C-MO, m. bYýYy Pdrw b$ I, " MMM Pl nd Q.
741ANc VI, AT1_POLYCONMI. 0.11)1.

wu,
w dl RLQl1114 d111,.. Isb 11N. 1.. Cw1wrl SI, mdd14 pYw bf1,1.1 Mlww Q. d n.

WIY111ANGULATIJ'OLYGONIQ
P1, M4

1M
W Mp RI. 0) bNýreb r1xI. W TIN. M

TIIIANCULAT/_/OI. Y(X1NRI. aQ
4d11.
Y b! 8101I. .. a111YW rN, M

TRIANGULATL_IOI. YOON(Q PL i1.
Wtlll.

F--"- ýIND_TM65öEN_NlIGMIOVRSýCVIIRlNf_fDIM. TNN. NTNI

P n+YS. .nw,. V I.. ac I. w o. mm wN.... . 40*- a. rnw "/
r NIM. N. Nwiwr iMw.. nýMwn. pY+A- v
I'M-ft-palest 10, N. MIKLNr_101NT"/

Mw. W. SIA11CH.. AUA (in Iww of be . to%$
FOUND. FALSE
Dn WMb NOT POUND

UrrE MANCH ANNA N. -ml p. Y! (NINE) M CURRENT-POINT
Y NNY .wM.. d L%o

FOUND . TAU!.
N1w

I. ryd SAA! OLAIKA
Y 36ARCN_AYKA 1wr wwdý w!. 0. wYw UMr. I-

(. wnr Frew tldH. . In wwwýl .. M. H! nM Mr M. nwýAýr
r. wd wM

wll.
Mdii

WD.
Nm. l
TNlW". NH!
i-NM
PINHH! D . FALSE.
Da Whit NOI ANISH! O

INN. II. ! UANp1-AK A.
POUND. /IAS§
0. WNb NOT POUND

O. A Y6MIIXARIA kr Miles... N. H! im&Mp ICVUSNºJOYItß
0-

POUND. T U!
Ylw

IH! YIAYQI. ANNA.
Y)LARCH A UAiw wwd,.. rW rrM Vw. r. M

G.... rI.. a.... eeý.. wawwww
. ºrr ý. Iw-. 1 eM

*Wig
wu.

wD.
YK. PINS. 11%.

NTH . NIN. 1.
tN! NTN) . K.
I. K.

pes
PINWllD . TAU!

Mdll
wOw

Tim COMPUTER JOURNAL, VOL. 37. No. 1,1994

A3-43

www.manaraa.com

" Appendix 3 Published Papers

THE IMPLICIT TIN AND MULTISCALE SPATIAL DATABASES 57

ºmndun DELAUNAY_TIIANCULATE

/"T V "nnnyr"d b MM IM IM d ThMýan I. VIboun d" rdM "/
r NTN. I. m0 O(Tlw"w""NR1dw""FaM h. "/

U. ..
9. F

then"dgw bX-w MIpdnd Wdtr "d&-6. V. * b*" dl. 1"dnw
... d N. *m MMgwdo..
Rad Iquind Mr SM. . b. M r "SMMI I INI of "dIM. r. A Idwwwi Mow Scm.
flee b d. M.. 0 rd I. hI ". 0w in Me 00.0001 d, Y 00001o00.
M all v VESTS (NUMBER_OF_VERTICVS) w to TRIANGUTATION_STACK.
kowlim Yr ab k pdno (5IACK FOINIEII " 1º
Do Whilr STACKPOIMF. R " NU MBEILOF_VERTK'ES

LM CUES JT_POINF"bF "Id TIUANOUTATION_STACK(STACK JOINTER).
FIND_THIESSEN NEICH! OUIWCURRENT_ºOIN1, TNBS, NIN)
A. wcn pr of TNn"wl Mob- (N.. Nº)

M MAnMR1ýEenn "w n"MMd hquwý"q{W M
M"NnW'dp(W, Nº)ln-W IM q. "T Ibn M

V N. N. a disdy Mwi NI. d. ld. IM
NUMRER�OF_VERTKES - NUMEEILOº_VEIITICES "1
TRIANGULATION_ETACK(NUMEFR OF_VERTICES) " N.

PMTS
N Nb hm wM dn"dy Ma. YWKWHd. M.

NUMIIEROF VERTICES " NUMRER. OF VERT1CE3.1.
TRIANGU ATION_ETACK(NUMEEK_OF_VERTICSS) " Nb.

&W 1.
EMIT

Bndif
4dNI
Add CURRENT-POINT rd TAN..., "e1RAM"w (INES) bh T1N.
ETACK_I OINTEP " EIACICFOINTER . 1.

6, dýe.

REFERENCES

[1] Abraham. 1. M. (1988) Automated cartographic line
generalisation and scale-Independent databases.
Unpublished PhD Thesis, Department or Mathematics
& Computer Studies. The Polytechnic of wales. UK.

[2] Ballard, D. 11. (1981) Strip trees: a hierarchical repres.
entation for curves. Commun. ACM, 24,310-321.

[3] Becker. B., Six, H-W. and Widmayer, Pr(1991) Spatial
priority search: an access technique for scaleless maps.
In Clifford. J. and King, R. (eds) Proceedings of the 1991
ACM SIGMOD International Conference on the
Management of Data, Denver, Colorado, May 29-31.
ACM SIGMOD Record, 20,128-137.

[4] Chew, I« P. (1987) Constrained Delaunay triangulations.
In Proceedings of the Third ACM Symposium on
Computational Geometry, Waterloo, June. 216-222.

[5] De Floriani. L. (1987) Surface representations based on
triangular grids. The Visual Computer, 3, pp. 27-50.

[6] Dc floriani, L. (1989) A pyramidal data structure for
tnangle-based surface description. IEEE Computer
Graphics and Applications, 67-78.

[7] De Flonani. L. and Puppo, E. (1988) Constrained
Delaunay triangulation for multtresolution surface
description. In Proceedings of the 9th International
Conference on Pattern Recognition, Rome, November,
566-569. (Reprinted by IEEE Computer Society Press.)

[8] Douglas, D. H. and Peucker, T. K. (1973) Algorithms
for the reduction or the number or points required to
represent a digitized line or its caricature. The Canadian
Cartographer, 10,112-122.

[9] ElGindy, H. (1990) Optimal parallel algorithms for
updating planar triangulations. In Proceedings of the 4th
international Srmposiuni on Spatial Data Handling, Vol. 1,
Zurich, July, Publisher? 200-208.

[10] Gargantini, 1. (1982) An effective way to represent quad-
trees. Comrnun. ACM. 25,905-910.

PI] Green, P. J. and Sibson, R. (1978) Computing Dirichlet
tessellations in the plane. Computer J. 21, pp. 168-173.

[12] Guttman, A. (1984) R-trees: a dynamic index structure
for spatial searching. In Proceedings 1984 ACM
SIGMOD International Conference an Management of
Data, Boston, June, Location?, 47-57.

[13] Hocl, E. G. and Samet, If. (1992) A qualitative compar.
ison study of data structures for large line segment
databases. In Proceedings 1992 ACM S1GAMOD. San
diego. ACM SIGAfOD Record, 21,205-214.

[14] Jones, C. B. (1991) Database architecture for multi-scale
GIS. In Proceedings Auto-Carta 10, Baltimore. ACSM.
ASPRS, Full details?, 1-14.

[151 Jones, C. B. and Abraham. 1. M. (1986) Design considera-
tionq for a scale-independent cartographic database. In
Proceedings of the 2nd International Svmpnmium on Spatial
Data Handling, Seattle, Washington, July, International
Geographical Union, 384-398.

[16] Jones, C. B. and Abraham, 1. M. (1987) Line generalis-
ation in a global cartographic database. Cartograpiuca,
24,32-45.

[17] Kidner, D. B. (1991) Digital terrain models for radio
path loss calculations. Unpublished PhD Thesis.
Department of Mathematics & Computer Studies, The
Polytechnic of Wales, UK. (Available from Defence
Research Information Centre, Kentigern House, Brown
Street, Glasgow, UK.)

[18] Kidner, D. B. and Jones, C. B. (1991) Implicit triangula.
tions for large terrain databases. In Proceedings of the 2nd European Conference an GiS. Vol. 1, Brussels,
Belgium, April, Publisher?, 537-546.

[19] Lee, J. (1991) Comparison of existing methods for build.
ing triangular irregular network models of terrain fron
grid digital elevation models. list. J. GIS, S. 267-285.

[20] McCullagh, M. J. nd Ross, C. G. (1980) Delaunay
triangulation of a random data set for isarithmic map-
ping. Cartographic J. 17.93-99.

[21] Nelson, R. C. and Samel, 11. (1986) A consistent hierarch.
ical representation for vector data. In Proceedings of ACM SIGGRAPH, Dallas. August. SIGGRAPl1.20,
197-206.

[22] Peucker, T. K, Fowler, R. J. Little, J. J. and Mark, D. M.
(1978) The triangulated irregular network. In
Proceedings of the Digital Terrain Models (DTAf)
Symposium, Location?, ASP/ACSM, May, 516-540.

[23] Sibson, R. (1978) Locally equiangular triangulations.
Computer J., 21,243-245.

[24] van Oosterom, P. (1990) Reactive data structures for
geographic information systems. PhD thesis, Department
of Computer Science, Leiden University, The Netherlands.

[25] van Oosterom, P. (1991) The Reactive-Tree. a storage
structure for a seamless, scaleless geographic database.
In Proceedings Auto-Carlo 10, ACSM/ASPRS, Vol. 6. Baltimore, March. 393-407.

[26] Ware. 3. A. and Kidner, D. B. (1991) Parallel implements.
Lion of the Delaunay triangulation within a transputer
environment. In Proceedings of the 2nd European Conference on GIS, Vol. 2, Brussels, Belgium. April, Publisher?, 1199-1208.

[27] Ware, J. M. and Jones, C. B. (1992) A multiresolution topographic surface database. Inc J. GIS. 6,479-496.

TIIE COMPUTER JOURNAL, VOL. 37, No. 1,1994

A3-44

